halejosm's picture
Update app.py
d17bdaa verified
raw
history blame
542 Bytes
import streamlit as st
#from transformers import pipeline
#Nombre_modelo = 'pysentimiento/robertuito-sentiment-analysis'
st.title("Ejercicio interfaz transformers pipeline")
model_options = [
"facebook/bart-large-mnli",
"roberta-large-mnli",
"cross-encoder/nli-roberta-base"
]
# Seleccionar el modelo del pipeline
selected_model = st.selectbox("Selecciona un modelo", model_options)
#Clasificador = pipeline('sentiment-analysis', model = Nombre_modelo,device='cuda')
#Res=Cla("sundays are good day for relaxing")
#print(Res)