Spaces:
Sleeping
Sleeping
#!/usr/bin/python3 | |
import os | |
from audioldm import text_to_audio, style_transfer, build_model, save_wave, get_time, round_up_duration, get_duration | |
import argparse | |
CACHE_DIR = os.getenv( | |
"AUDIOLDM_CACHE_DIR", | |
os.path.join(os.path.expanduser("~"), ".cache/audioldm")) | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--mode", | |
type=str, | |
required=False, | |
default="generation", | |
help="generation: text-to-audio generation; transfer: style transfer", | |
choices=["generation", "transfer"] | |
) | |
parser.add_argument( | |
"-t", | |
"--text", | |
type=str, | |
required=False, | |
default="", | |
help="Text prompt to the model for audio generation", | |
) | |
parser.add_argument( | |
"-f", | |
"--file_path", | |
type=str, | |
required=False, | |
default=None, | |
help="(--mode transfer): Original audio file for style transfer; Or (--mode generation): the guidance audio file for generating simialr audio", | |
) | |
parser.add_argument( | |
"--transfer_strength", | |
type=float, | |
required=False, | |
default=0.5, | |
help="A value between 0 and 1. 0 means original audio without transfer, 1 means completely transfer to the audio indicated by text", | |
) | |
parser.add_argument( | |
"-s", | |
"--save_path", | |
type=str, | |
required=False, | |
help="The path to save model output", | |
default="./output", | |
) | |
parser.add_argument( | |
"--model_name", | |
type=str, | |
required=False, | |
help="The checkpoint you gonna use", | |
default="audioldm-m-full", | |
choices=["audioldm-s-full", "audioldm-l-full", "audioldm-s-full-v2","audioldm-m-text-ft", "audioldm-s-text-ft", "audioldm-m-full"] | |
) | |
parser.add_argument( | |
"-ckpt", | |
"--ckpt_path", | |
type=str, | |
required=False, | |
help="The path to the pretrained .ckpt model", | |
default=None, | |
) | |
parser.add_argument( | |
"-b", | |
"--batchsize", | |
type=int, | |
required=False, | |
default=1, | |
help="Generate how many samples at the same time", | |
) | |
parser.add_argument( | |
"--ddim_steps", | |
type=int, | |
required=False, | |
default=200, | |
help="The sampling step for DDIM", | |
) | |
parser.add_argument( | |
"-gs", | |
"--guidance_scale", | |
type=float, | |
required=False, | |
default=2.5, | |
help="Guidance scale (Large => better quality and relavancy to text; Small => better diversity)", | |
) | |
parser.add_argument( | |
"-dur", | |
"--duration", | |
type=float, | |
required=False, | |
default=10.0, | |
help="The duration of the samples", | |
) | |
parser.add_argument( | |
"-n", | |
"--n_candidate_gen_per_text", | |
type=int, | |
required=False, | |
default=3, | |
help="Automatic quality control. This number control the number of candidates (e.g., generate three audios and choose the best to show you). A Larger value usually lead to better quality with heavier computation", | |
) | |
parser.add_argument( | |
"--seed", | |
type=int, | |
required=False, | |
default=42, | |
help="Change this value (any integer number) will lead to a different generation result.", | |
) | |
args = parser.parse_args() | |
if(args.ckpt_path is not None): | |
print("Warning: ckpt_path has no effect after version 0.0.20.") | |
assert args.duration % 2.5 == 0, "Duration must be a multiple of 2.5" | |
mode = args.mode | |
if(mode == "generation" and args.file_path is not None): | |
mode = "generation_audio_to_audio" | |
if(len(args.text) > 0): | |
print("Warning: You have specified the --file_path. --text will be ignored") | |
args.text = "" | |
save_path = os.path.join(args.save_path, mode) | |
if(args.file_path is not None): | |
save_path = os.path.join(save_path, os.path.basename(args.file_path.split(".")[0])) | |
text = args.text | |
random_seed = args.seed | |
duration = args.duration | |
guidance_scale = args.guidance_scale | |
n_candidate_gen_per_text = args.n_candidate_gen_per_text | |
os.makedirs(save_path, exist_ok=True) | |
audioldm = build_model(model_name=args.model_name) | |
if(args.mode == "generation"): | |
waveform = text_to_audio( | |
audioldm, | |
text, | |
args.file_path, | |
random_seed, | |
duration=duration, | |
guidance_scale=guidance_scale, | |
ddim_steps=args.ddim_steps, | |
n_candidate_gen_per_text=n_candidate_gen_per_text, | |
batchsize=args.batchsize, | |
) | |
elif(args.mode == "transfer"): | |
assert args.file_path is not None | |
assert os.path.exists(args.file_path), "The original audio file \'%s\' for style transfer does not exist." % args.file_path | |
waveform = style_transfer( | |
audioldm, | |
text, | |
args.file_path, | |
args.transfer_strength, | |
random_seed, | |
duration=duration, | |
guidance_scale=guidance_scale, | |
ddim_steps=args.ddim_steps, | |
batchsize=args.batchsize, | |
) | |
waveform = waveform[:,None,:] | |
save_wave(waveform, save_path, name="%s_%s" % (get_time(), text)) | |