Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer, StoppingCriteria, StoppingCriteriaList | |
from threading import Thread | |
tokenizer = AutoTokenizer.from_pretrained("haidlir/bloom-chatml-id") | |
model = AutoModelForCausalLM.from_pretrained("haidlir/bloom-chatml-id") | |
def predict(message, history): | |
history_chatml_format = [] | |
for human, assistant in history: | |
history_chatml_format.append({"role": "user", "content": human }) | |
history_chatml_format.append({"role": "assistant", "content":assistant}) | |
history_chatml_format.append({"role": "user", "content": message}) | |
model_inputs = chat_tokenizer.apply_chat_template( | |
history_chatml_format, | |
tokenize=True, | |
add_generation_prompt=True, | |
return_tensors="pt", | |
) | |
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
model_inputs, | |
streamer=streamer, | |
max_new_tokens=1024, | |
do_sample=True, | |
top_p=0.95, | |
top_k=1000, | |
temperature=1.0, | |
num_beams=1, | |
stopping_criteria=StoppingCriteriaList([stop]) | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
partial_message = "" | |
for new_token in streamer: | |
if new_token != '<': | |
partial_message += new_token | |
yield partial_message | |
gr.ChatInterface(predict).launch() |