Spaces:
Runtime error
Runtime error
fix
Browse files- app.py +83 -124
- utils/generator.py +171 -0
app.py
CHANGED
@@ -1,124 +1,76 @@
|
|
1 |
-
import random
|
2 |
-
import re
|
3 |
-
|
4 |
import gradio as gr
|
5 |
import torch
|
6 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
7 |
-
from transformers import pipeline, set_seed
|
8 |
|
|
|
|
|
9 |
from utils.image2text import git_image2text, w14_image2text, clip_image2text
|
10 |
-
from utils.singleton import Singleton
|
11 |
from utils.translate import en2zh as translate_en2zh
|
12 |
from utils.translate import zh2en as translate_zh2en
|
13 |
-
from utils.exif import get_image_info
|
14 |
|
15 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
if item in ('text_pipe',):
|
32 |
-
self.text_pipe = self.load_text_generation_pipeline()
|
33 |
-
|
34 |
-
return getattr(self, item)
|
35 |
-
|
36 |
-
@classmethod
|
37 |
-
def load_text_generation_pipeline(cls):
|
38 |
-
return pipeline('text-generation', model='succinctly/text2image-prompt-generator')
|
39 |
-
|
40 |
-
@classmethod
|
41 |
-
def load_prompter_model(cls):
|
42 |
-
prompter_model = AutoModelForCausalLM.from_pretrained("microsoft/Promptist")
|
43 |
-
tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
44 |
-
tokenizer.pad_token = tokenizer.eos_token
|
45 |
-
tokenizer.padding_side = "left"
|
46 |
-
return prompter_model, tokenizer
|
47 |
-
|
48 |
-
|
49 |
-
models = Models.instance()
|
50 |
-
|
51 |
-
|
52 |
-
def generate_prompter(plain_text, max_new_tokens=75, num_beams=8, num_return_sequences=8, length_penalty=-1.0):
|
53 |
-
input_ids = models.prompter_tokenizer(plain_text.strip() + " Rephrase:", return_tensors="pt").input_ids
|
54 |
-
eos_id = models.prompter_tokenizer.eos_token_id
|
55 |
-
outputs = models.prompter_model.generate(
|
56 |
-
input_ids,
|
57 |
-
do_sample=False,
|
58 |
-
max_new_tokens=max_new_tokens,
|
59 |
-
num_beams=num_beams,
|
60 |
-
num_return_sequences=num_return_sequences,
|
61 |
-
eos_token_id=eos_id,
|
62 |
-
pad_token_id=eos_id,
|
63 |
-
length_penalty=length_penalty
|
64 |
)
|
65 |
-
|
66 |
-
result = []
|
67 |
-
for output_text in output_texts:
|
68 |
-
result.append(output_text.replace(plain_text + " Rephrase:", "").strip())
|
69 |
-
|
70 |
-
return "\n".join(result)
|
71 |
|
72 |
|
73 |
def image_generate_prompter(
|
74 |
bclip_text,
|
75 |
w14_text,
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
|
|
80 |
):
|
81 |
-
result =
|
82 |
-
bclip_text,
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
)
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
result = ""
|
96 |
-
for _ in range(6):
|
97 |
-
sequences = models.text_pipe(text_in_english, max_length=random.randint(60, 90), num_return_sequences=8)
|
98 |
-
list = []
|
99 |
-
for sequence in sequences:
|
100 |
-
line = sequence['generated_text'].strip()
|
101 |
-
if line != text_in_english and len(line) > (len(text_in_english) + 4) and line.endswith(
|
102 |
-
(':', '-', '—')) is False:
|
103 |
-
list.append(line)
|
104 |
-
|
105 |
-
result = "\n".join(list)
|
106 |
-
result = re.sub('[^ ]+\.[^ ]+', '', result)
|
107 |
-
result = result.replace('<', '').replace('>', '')
|
108 |
-
if result != '':
|
109 |
-
break
|
110 |
-
return result, "\n".join(translate_en2zh(line) for line in result.split("\n") if len(line) > 0)
|
111 |
|
112 |
|
113 |
with gr.Blocks(title="Prompt生成器") as block:
|
114 |
with gr.Column():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
|
116 |
with gr.Tab('从图片中生成'):
|
117 |
with gr.Row():
|
118 |
input_image = gr.Image(type='pil')
|
119 |
exif_info = gr.HTML()
|
120 |
-
output_blip_or_clip = gr.Textbox(label='生成的 Prompt')
|
121 |
-
output_w14 = gr.Textbox(label='W14的 Prompt')
|
122 |
|
123 |
with gr.Accordion('W14', open=False):
|
124 |
w14_raw_output = gr.Textbox(label="Output (raw string)")
|
@@ -126,38 +78,35 @@ with gr.Blocks(title="Prompt生成器") as block:
|
|
126 |
w14_rating_output = gr.Label(label="Rating")
|
127 |
w14_characters_output = gr.Label(label="Output (characters)")
|
128 |
w14_tags_output = gr.Label(label="Output (tags)")
|
129 |
-
|
|
|
130 |
with gr.Row():
|
131 |
img_exif_btn = gr.Button('EXIF')
|
132 |
img_blip_btn = gr.Button('BLIP图片转描述')
|
133 |
img_w14_btn = gr.Button('W14图片转描述')
|
134 |
img_clip_btn = gr.Button('CLIP图片转描述')
|
135 |
-
img_prompter_btn = gr.Button('
|
136 |
-
|
137 |
-
with gr.Tab('文本生成'):
|
138 |
-
with gr.Row():
|
139 |
-
input_text = gr.Textbox(lines=6, label='你的想法', placeholder='在此输入内容...')
|
140 |
-
translate_output = gr.Textbox(lines=6, label='翻译结果(Prompt输入)')
|
141 |
|
142 |
-
generate_prompter_output = gr.Textbox(lines=6, label='SD优化的 Prompt')
|
143 |
-
|
144 |
-
output = gr.Textbox(lines=6, label='瞎编的 Prompt')
|
145 |
-
output_zh = gr.Textbox(lines=6, label='瞎编的 Prompt(zh)')
|
146 |
-
with gr.Row():
|
147 |
-
translate_btn = gr.Button('翻译')
|
148 |
-
generate_prompter_btn = gr.Button('SD优化')
|
149 |
-
gpt_btn = gr.Button('瞎编')
|
150 |
with gr.Tab('参数设置'):
|
151 |
-
with gr.Accordion('
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
with gr.Accordion('BLIP参数', open=True):
|
157 |
blip_max_length = gr.Slider(1, 512, 100, label='max_length', step=1)
|
158 |
with gr.Accordion('CLIP参数', open=True):
|
159 |
clip_mode_type = gr.Radio(['best', 'classic', 'fast', 'negative'], value='best', label='mode_type')
|
160 |
-
clip_model_name = gr.Radio(['vit_h_14', 'vit_l_14', ], value='vit_h_14', )
|
161 |
with gr.Accordion('WD14参数', open=True):
|
162 |
image2text_model = gr.Radio(
|
163 |
[
|
@@ -185,22 +134,32 @@ with gr.Blocks(title="Prompt生成器") as block:
|
|
185 |
)
|
186 |
img_prompter_btn.click(
|
187 |
fn=image_generate_prompter,
|
188 |
-
inputs=[
|
189 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
)
|
191 |
translate_btn.click(
|
192 |
fn=translate_zh2en,
|
193 |
inputs=input_text,
|
194 |
outputs=translate_output
|
195 |
)
|
|
|
196 |
generate_prompter_btn.click(
|
197 |
-
fn=
|
198 |
-
inputs=[
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
|
|
204 |
outputs=[output, output_zh]
|
205 |
)
|
206 |
img_w14_btn.click(
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
|
|
|
|
3 |
|
4 |
+
from utils.exif import get_image_info
|
5 |
+
from utils.generator import generate_prompt
|
6 |
from utils.image2text import git_image2text, w14_image2text, clip_image2text
|
|
|
7 |
from utils.translate import en2zh as translate_en2zh
|
8 |
from utils.translate import zh2en as translate_zh2en
|
|
|
9 |
|
10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
|
12 |
|
13 |
+
def text_generate_prompter(
|
14 |
+
plain_text,
|
15 |
+
model_name='microsoft',
|
16 |
+
prompt_min_length=60,
|
17 |
+
prompt_max_length=75,
|
18 |
+
prompt_num_return_sequences=8,
|
19 |
+
):
|
20 |
+
result = generate_prompt(
|
21 |
+
plain_text=plain_text,
|
22 |
+
model_name=model_name,
|
23 |
+
min_length=prompt_min_length,
|
24 |
+
max_length=prompt_max_length,
|
25 |
+
num_return_sequences=prompt_num_return_sequences
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
)
|
27 |
+
return result, "\n".join(translate_en2zh(line) for line in result.split("\n") if len(line) > 0)
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
|
30 |
def image_generate_prompter(
|
31 |
bclip_text,
|
32 |
w14_text,
|
33 |
+
model_name='microsoft',
|
34 |
+
prompt_min_length=60,
|
35 |
+
prompt_max_length=75,
|
36 |
+
prompt_num_return_sequences=8,
|
37 |
+
|
38 |
):
|
39 |
+
result = generate_prompt(
|
40 |
+
plain_text=bclip_text,
|
41 |
+
model_name=model_name,
|
42 |
+
min_length=prompt_min_length,
|
43 |
+
max_length=prompt_max_length,
|
44 |
+
num_return_sequences=prompt_num_return_sequences
|
45 |
)
|
46 |
+
prompter_list = ["{},{}".format(line.strip(), w14_text.strip()) for line in result.split("\n") if len(line) > 0]
|
47 |
+
prompter_zh_list = [
|
48 |
+
"{},{}".format(translate_en2zh(line.strip()), translate_en2zh(w14_text.strip())) for line in
|
49 |
+
result.split("\n") if len(line) > 0
|
50 |
+
]
|
51 |
+
return "\n".join(prompter_list), "\n".join(prompter_zh_list)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
|
54 |
with gr.Blocks(title="Prompt生成器") as block:
|
55 |
with gr.Column():
|
56 |
+
with gr.Tab('文本生成'):
|
57 |
+
with gr.Row():
|
58 |
+
input_text = gr.Textbox(lines=6, label='你的想法', placeholder='在此输入内容...')
|
59 |
+
translate_output = gr.Textbox(lines=6, label='翻译结果(Prompt输入)')
|
60 |
+
|
61 |
+
output = gr.Textbox(lines=6, label='优化的 Prompt')
|
62 |
+
output_zh = gr.Textbox(lines=6, label='优化的 Prompt(zh)')
|
63 |
+
with gr.Row():
|
64 |
+
translate_btn = gr.Button('翻译')
|
65 |
+
|
66 |
+
generate_prompter_btn = gr.Button('优化Prompt')
|
67 |
|
68 |
with gr.Tab('从图片中生成'):
|
69 |
with gr.Row():
|
70 |
input_image = gr.Image(type='pil')
|
71 |
exif_info = gr.HTML()
|
72 |
+
output_blip_or_clip = gr.Textbox(label='生成的 Prompt', lines=4)
|
73 |
+
output_w14 = gr.Textbox(label='W14的 Prompt', lines=4)
|
74 |
|
75 |
with gr.Accordion('W14', open=False):
|
76 |
w14_raw_output = gr.Textbox(label="Output (raw string)")
|
|
|
78 |
w14_rating_output = gr.Label(label="Rating")
|
79 |
w14_characters_output = gr.Label(label="Output (characters)")
|
80 |
w14_tags_output = gr.Label(label="Output (tags)")
|
81 |
+
output_img_prompter = gr.Textbox(lines=6, label='优化的 Prompt')
|
82 |
+
output_img_prompter_zh = gr.Textbox(lines=6, label='优化的 Prompt(zh)')
|
83 |
with gr.Row():
|
84 |
img_exif_btn = gr.Button('EXIF')
|
85 |
img_blip_btn = gr.Button('BLIP图片转描述')
|
86 |
img_w14_btn = gr.Button('W14图片转描述')
|
87 |
img_clip_btn = gr.Button('CLIP图片转描述')
|
88 |
+
img_prompter_btn = gr.Button('优化Prompt')
|
|
|
|
|
|
|
|
|
|
|
89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
with gr.Tab('参数设置'):
|
91 |
+
with gr.Accordion('Prompt优化参数', open=True):
|
92 |
+
prompt_mode_name = gr.Radio(
|
93 |
+
[
|
94 |
+
'microsoft',
|
95 |
+
'mj',
|
96 |
+
'gpt2_650k',
|
97 |
+
],
|
98 |
+
value='gpt2_650k',
|
99 |
+
label='model_name'
|
100 |
+
)
|
101 |
+
prompt_min_length = gr.Slider(1, 512, 100, label='min_length', step=1)
|
102 |
+
prompt_max_length = gr.Slider(1, 512, 200, label='max_length', step=1)
|
103 |
+
prompt_num_return_sequences = gr.Slider(1, 30, 6, label='num_return_sequences', step=1)
|
104 |
+
|
105 |
with gr.Accordion('BLIP参数', open=True):
|
106 |
blip_max_length = gr.Slider(1, 512, 100, label='max_length', step=1)
|
107 |
with gr.Accordion('CLIP参数', open=True):
|
108 |
clip_mode_type = gr.Radio(['best', 'classic', 'fast', 'negative'], value='best', label='mode_type')
|
109 |
+
clip_model_name = gr.Radio(['vit_h_14', 'vit_l_14', ], value='vit_h_14', label='model_name')
|
110 |
with gr.Accordion('WD14参数', open=True):
|
111 |
image2text_model = gr.Radio(
|
112 |
[
|
|
|
134 |
)
|
135 |
img_prompter_btn.click(
|
136 |
fn=image_generate_prompter,
|
137 |
+
inputs=[
|
138 |
+
output_blip_or_clip,
|
139 |
+
output_w14,
|
140 |
+
prompt_mode_name,
|
141 |
+
prompt_min_length,
|
142 |
+
prompt_max_length,
|
143 |
+
prompt_num_return_sequences,
|
144 |
+
|
145 |
+
],
|
146 |
+
outputs=[output_img_prompter, output_img_prompter_zh]
|
147 |
)
|
148 |
translate_btn.click(
|
149 |
fn=translate_zh2en,
|
150 |
inputs=input_text,
|
151 |
outputs=translate_output
|
152 |
)
|
153 |
+
|
154 |
generate_prompter_btn.click(
|
155 |
+
fn=text_generate_prompter,
|
156 |
+
inputs=[
|
157 |
+
translate_output,
|
158 |
+
prompt_mode_name,
|
159 |
+
prompt_min_length,
|
160 |
+
prompt_max_length,
|
161 |
+
prompt_num_return_sequences,
|
162 |
+
],
|
163 |
outputs=[output, output_zh]
|
164 |
)
|
165 |
img_w14_btn.click(
|
utils/generator.py
ADDED
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
from transformers import pipeline, set_seed
|
4 |
+
import random
|
5 |
+
import re
|
6 |
+
from .singleton import Singleton
|
7 |
+
|
8 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
9 |
+
|
10 |
+
|
11 |
+
@Singleton
|
12 |
+
class Models(object):
|
13 |
+
|
14 |
+
def __getattr__(self, item):
|
15 |
+
if item in self.__dict__:
|
16 |
+
return getattr(self, item)
|
17 |
+
|
18 |
+
if item in ('microsoft_model', 'microsoft_tokenizer'):
|
19 |
+
self.microsoft_model, self.microsoft_tokenizer = self.load_microsoft_model()
|
20 |
+
|
21 |
+
if item in ('mj_pipe',):
|
22 |
+
self.mj_pipe = self.load_mj_pipe()
|
23 |
+
|
24 |
+
if item in ('gpt2_650k_pipe',):
|
25 |
+
self.gpt2_650k_pipe = self.load_gpt2_650k_pipe()
|
26 |
+
|
27 |
+
return getattr(self, item)
|
28 |
+
|
29 |
+
@classmethod
|
30 |
+
def load_gpt2_650k_pipe(cls):
|
31 |
+
|
32 |
+
return pipeline('text-generation', model='Ar4ikov/gpt2-650k-stable-diffusion-prompt-generator')
|
33 |
+
|
34 |
+
@classmethod
|
35 |
+
def load_mj_pipe(cls):
|
36 |
+
return pipeline('text-generation', model='succinctly/text2image-prompt-generator')
|
37 |
+
|
38 |
+
@classmethod
|
39 |
+
def load_microsoft_model(cls):
|
40 |
+
prompter_model = AutoModelForCausalLM.from_pretrained("microsoft/Promptist")
|
41 |
+
tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
42 |
+
tokenizer.pad_token = tokenizer.eos_token
|
43 |
+
tokenizer.padding_side = "left"
|
44 |
+
return prompter_model, tokenizer
|
45 |
+
|
46 |
+
|
47 |
+
models = Models.instance()
|
48 |
+
|
49 |
+
|
50 |
+
def rand_length(min_length: int = 60, max_length: int = 90) -> int:
|
51 |
+
if min_length > max_length:
|
52 |
+
return max_length
|
53 |
+
|
54 |
+
return random.randint(min_length, max_length)
|
55 |
+
|
56 |
+
|
57 |
+
def generate_prompt(
|
58 |
+
plain_text,
|
59 |
+
min_length=60,
|
60 |
+
max_length=90,
|
61 |
+
num_return_sequences=8,
|
62 |
+
model_name='microsoft',
|
63 |
+
):
|
64 |
+
if model_name == 'gpt2_650k':
|
65 |
+
return generate_prompt_gpt2_650k(
|
66 |
+
prompt=plain_text,
|
67 |
+
min_length=min_length,
|
68 |
+
max_length=max_length,
|
69 |
+
num_return_sequences=num_return_sequences,
|
70 |
+
)
|
71 |
+
elif model_name == 'mj':
|
72 |
+
return generate_prompt_mj(
|
73 |
+
text_in_english=plain_text,
|
74 |
+
num_return_sequences=num_return_sequences,
|
75 |
+
min_length=min_length,
|
76 |
+
max_length=max_length,
|
77 |
+
)
|
78 |
+
else:
|
79 |
+
return generate_prompt_microsoft(
|
80 |
+
plain_text=plain_text,
|
81 |
+
min_length=min_length,
|
82 |
+
max_length=max_length,
|
83 |
+
num_return_sequences=num_return_sequences,
|
84 |
+
num_beams=num_return_sequences,
|
85 |
+
)
|
86 |
+
|
87 |
+
|
88 |
+
def generate_prompt_microsoft(
|
89 |
+
plain_text,
|
90 |
+
min_length=60,
|
91 |
+
max_length=90,
|
92 |
+
num_beams=8,
|
93 |
+
num_return_sequences=8,
|
94 |
+
length_penalty=-1.0
|
95 |
+
) -> str:
|
96 |
+
input_ids = models.microsoft_tokenizer(plain_text.strip() + " Rephrase:", return_tensors="pt").input_ids
|
97 |
+
eos_id = models.microsoft_tokenizer.eos_token_id
|
98 |
+
|
99 |
+
outputs = models.microsoft_model.generate(
|
100 |
+
input_ids,
|
101 |
+
do_sample=False,
|
102 |
+
max_new_tokens=rand_length(min_length, max_length),
|
103 |
+
num_beams=num_beams,
|
104 |
+
num_return_sequences=num_return_sequences,
|
105 |
+
eos_token_id=eos_id,
|
106 |
+
pad_token_id=eos_id,
|
107 |
+
length_penalty=length_penalty
|
108 |
+
)
|
109 |
+
output_texts = models.microsoft_tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
110 |
+
result = []
|
111 |
+
for output_text in output_texts:
|
112 |
+
result.append(output_text.replace(plain_text + " Rephrase:", "").strip())
|
113 |
+
|
114 |
+
return "\n".join(result)
|
115 |
+
|
116 |
+
|
117 |
+
def generate_prompt_gpt2_650k(prompt: str, min_length=60, max_length: int = 255, num_return_sequences: int = 8) -> str:
|
118 |
+
def get_valid_prompt(text: str) -> str:
|
119 |
+
dot_split = text.split('.')[0]
|
120 |
+
n_split = text.split('\n')[0]
|
121 |
+
|
122 |
+
return {
|
123 |
+
len(dot_split) < len(n_split): dot_split,
|
124 |
+
len(n_split) > len(dot_split): n_split,
|
125 |
+
len(n_split) == len(dot_split): dot_split
|
126 |
+
}[True]
|
127 |
+
|
128 |
+
output = []
|
129 |
+
for _ in range(6):
|
130 |
+
|
131 |
+
output += [
|
132 |
+
get_valid_prompt(result['generated_text']) for result in
|
133 |
+
models.gpt2_650k_pipe(
|
134 |
+
prompt,
|
135 |
+
max_new_tokens=rand_length(min_length, max_length),
|
136 |
+
num_return_sequences=num_return_sequences
|
137 |
+
)
|
138 |
+
]
|
139 |
+
output = list(set(output))
|
140 |
+
if len(output) >= num_return_sequences:
|
141 |
+
break
|
142 |
+
|
143 |
+
# valid_prompt = get_valid_prompt(models.gpt2_650k_pipe(prompt, max_length=max_length)[0]['generated_text'])
|
144 |
+
return "\n".join([o.strip() for o in output])
|
145 |
+
|
146 |
+
|
147 |
+
def generate_prompt_mj(text_in_english: str, num_return_sequences: int = 8, min_length=60, max_length=90) -> str:
|
148 |
+
seed = random.randint(100, 1000000)
|
149 |
+
set_seed(seed)
|
150 |
+
|
151 |
+
result = ""
|
152 |
+
for _ in range(6):
|
153 |
+
sequences = models.mj_pipe(
|
154 |
+
text_in_english,
|
155 |
+
max_new_tokens=rand_length(min_length, max_length),
|
156 |
+
num_return_sequences=num_return_sequences
|
157 |
+
)
|
158 |
+
list = []
|
159 |
+
for sequence in sequences:
|
160 |
+
line = sequence['generated_text'].strip()
|
161 |
+
if line != text_in_english and len(line) > (len(text_in_english) + 4) and line.endswith(
|
162 |
+
(':', '-', '—')) is False:
|
163 |
+
list.append(line)
|
164 |
+
|
165 |
+
result = "\n".join(list)
|
166 |
+
result = re.sub('[^ ]+\.[^ ]+', '', result)
|
167 |
+
result = result.replace('<', '').replace('>', '')
|
168 |
+
if result != '':
|
169 |
+
break
|
170 |
+
return result
|
171 |
+
# return result, "\n".join(translate_en2zh(line) for line in result.split("\n") if len(line) > 0)
|