Spaces:
Runtime error
Runtime error
init
Browse files- app.py +235 -0
- requirements.txt +6 -0
app.py
ADDED
@@ -0,0 +1,235 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
import re
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
import torch
|
6 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
7 |
+
from transformers import pipeline, set_seed
|
8 |
+
|
9 |
+
from utils.image2text import git_image2text, w14_image2text, clip_image2text
|
10 |
+
from utils.singleton import Singleton
|
11 |
+
from utils.translate import en2zh as translate_en2zh
|
12 |
+
from utils.translate import zh2en as translate_zh2en
|
13 |
+
from utils.exif import get_image_info
|
14 |
+
|
15 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
+
|
17 |
+
|
18 |
+
@Singleton
|
19 |
+
class Models(object):
|
20 |
+
|
21 |
+
def __getattr__(self, item):
|
22 |
+
if item in self.__dict__:
|
23 |
+
return getattr(self, item)
|
24 |
+
|
25 |
+
if item in ('big_model', 'big_processor'):
|
26 |
+
self.big_model, self.big_processor = self.load_image2text_model()
|
27 |
+
|
28 |
+
if item in ('prompter_model', 'prompter_tokenizer'):
|
29 |
+
self.prompter_model, self.prompter_tokenizer = self.load_prompter_model()
|
30 |
+
|
31 |
+
if item in ('text_pipe',):
|
32 |
+
self.text_pipe = self.load_text_generation_pipeline()
|
33 |
+
|
34 |
+
return getattr(self, item)
|
35 |
+
|
36 |
+
@classmethod
|
37 |
+
def load_text_generation_pipeline(cls):
|
38 |
+
return pipeline('text-generation', model='succinctly/text2image-prompt-generator')
|
39 |
+
|
40 |
+
@classmethod
|
41 |
+
def load_prompter_model(cls):
|
42 |
+
prompter_model = AutoModelForCausalLM.from_pretrained("microsoft/Promptist")
|
43 |
+
tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
44 |
+
tokenizer.pad_token = tokenizer.eos_token
|
45 |
+
tokenizer.padding_side = "left"
|
46 |
+
return prompter_model, tokenizer
|
47 |
+
|
48 |
+
|
49 |
+
models = Models.instance()
|
50 |
+
|
51 |
+
|
52 |
+
def generate_prompter(plain_text, max_new_tokens=75, num_beams=8, num_return_sequences=8, length_penalty=-1.0):
|
53 |
+
input_ids = models.prompter_tokenizer(plain_text.strip() + " Rephrase:", return_tensors="pt").input_ids
|
54 |
+
eos_id = models.prompter_tokenizer.eos_token_id
|
55 |
+
outputs = models.prompter_model.generate(
|
56 |
+
input_ids,
|
57 |
+
do_sample=False,
|
58 |
+
max_new_tokens=max_new_tokens,
|
59 |
+
num_beams=num_beams,
|
60 |
+
num_return_sequences=num_return_sequences,
|
61 |
+
eos_token_id=eos_id,
|
62 |
+
pad_token_id=eos_id,
|
63 |
+
length_penalty=length_penalty
|
64 |
+
)
|
65 |
+
output_texts = models.prompter_tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
66 |
+
result = []
|
67 |
+
for output_text in output_texts:
|
68 |
+
result.append(output_text.replace(plain_text + " Rephrase:", "").strip())
|
69 |
+
|
70 |
+
return "\n".join(result)
|
71 |
+
|
72 |
+
|
73 |
+
def image_generate_prompter(
|
74 |
+
bclip_text,
|
75 |
+
w14_text,
|
76 |
+
max_new_tokens=75,
|
77 |
+
num_beams=8,
|
78 |
+
num_return_sequences=8,
|
79 |
+
length_penalty=-1.0
|
80 |
+
):
|
81 |
+
result = generate_prompter(
|
82 |
+
bclip_text,
|
83 |
+
max_new_tokens,
|
84 |
+
num_beams,
|
85 |
+
num_return_sequences,
|
86 |
+
length_penalty
|
87 |
+
)
|
88 |
+
return "\n".join(["{},{}".format(line.strip(), w14_text.strip()) for line in result.split("\n") if len(line) > 0])
|
89 |
+
|
90 |
+
|
91 |
+
def text_generate(text_in_english):
|
92 |
+
seed = random.randint(100, 1000000)
|
93 |
+
set_seed(seed)
|
94 |
+
|
95 |
+
result = ""
|
96 |
+
for _ in range(6):
|
97 |
+
sequences = models.text_pipe(text_in_english, max_length=random.randint(60, 90), num_return_sequences=8)
|
98 |
+
list = []
|
99 |
+
for sequence in sequences:
|
100 |
+
line = sequence['generated_text'].strip()
|
101 |
+
if line != text_in_english and len(line) > (len(text_in_english) + 4) and line.endswith(
|
102 |
+
(':', '-', '—')) is False:
|
103 |
+
list.append(line)
|
104 |
+
|
105 |
+
result = "\n".join(list)
|
106 |
+
result = re.sub('[^ ]+\.[^ ]+', '', result)
|
107 |
+
result = result.replace('<', '').replace('>', '')
|
108 |
+
if result != '':
|
109 |
+
break
|
110 |
+
return result, "\n".join(translate_en2zh(line) for line in result.split("\n") if len(line) > 0)
|
111 |
+
|
112 |
+
|
113 |
+
with gr.Blocks(title="Prompt生成器") as block:
|
114 |
+
with gr.Column():
|
115 |
+
|
116 |
+
with gr.Tab('从图片中生成'):
|
117 |
+
with gr.Row():
|
118 |
+
input_image = gr.Image(type='pil')
|
119 |
+
exif_info = gr.HTML()
|
120 |
+
output_blip_or_clip = gr.Textbox(label='生成的 Prompt')
|
121 |
+
output_w14 = gr.Textbox(label='W14的 Prompt')
|
122 |
+
|
123 |
+
with gr.Accordion('W14', open=False):
|
124 |
+
w14_raw_output = gr.Textbox(label="Output (raw string)")
|
125 |
+
w14_booru_output = gr.Textbox(label="Output (booru string)")
|
126 |
+
w14_rating_output = gr.Label(label="Rating")
|
127 |
+
w14_characters_output = gr.Label(label="Output (characters)")
|
128 |
+
w14_tags_output = gr.Label(label="Output (tags)")
|
129 |
+
images_generate_prompter_output = gr.Textbox(lines=6, label='SD优化的 Prompt')
|
130 |
+
with gr.Row():
|
131 |
+
img_exif_btn = gr.Button('EXIF')
|
132 |
+
img_blip_btn = gr.Button('BLIP图片转描述')
|
133 |
+
img_w14_btn = gr.Button('W14图片转描述')
|
134 |
+
img_clip_btn = gr.Button('CLIP图片转描述')
|
135 |
+
img_prompter_btn = gr.Button('SD优化')
|
136 |
+
|
137 |
+
with gr.Tab('文本生成'):
|
138 |
+
with gr.Row():
|
139 |
+
input_text = gr.Textbox(lines=6, label='你的想法', placeholder='在此输入内容...')
|
140 |
+
translate_output = gr.Textbox(lines=6, label='翻译结果(Prompt输入)')
|
141 |
+
|
142 |
+
generate_prompter_output = gr.Textbox(lines=6, label='SD优化的 Prompt')
|
143 |
+
|
144 |
+
output = gr.Textbox(lines=6, label='瞎编的 Prompt')
|
145 |
+
output_zh = gr.Textbox(lines=6, label='瞎编的 Prompt(zh)')
|
146 |
+
with gr.Row():
|
147 |
+
translate_btn = gr.Button('翻译')
|
148 |
+
generate_prompter_btn = gr.Button('SD优化')
|
149 |
+
gpt_btn = gr.Button('瞎编')
|
150 |
+
with gr.Tab('参数设置'):
|
151 |
+
with gr.Accordion('SD优化参数', open=True):
|
152 |
+
max_new_tokens = gr.Slider(1, 512, 100, label='max_new_tokens', step=1)
|
153 |
+
nub_beams = gr.Slider(1, 30, 6, label='num_beams', step=1)
|
154 |
+
num_return_sequences = gr.Slider(1, 30, 6, label='num_return_sequences', step=1)
|
155 |
+
length_penalty = gr.Slider(-1.0, 1.0, -1.0, label='length_penalty')
|
156 |
+
with gr.Accordion('BLIP参数', open=True):
|
157 |
+
blip_max_length = gr.Slider(1, 512, 100, label='max_length', step=1)
|
158 |
+
with gr.Accordion('CLIP参数', open=True):
|
159 |
+
clip_mode_type = gr.Radio(['best', 'classic', 'fast', 'negative'], value='best', label='mode_type')
|
160 |
+
clip_model_name = gr.Radio(['vit_h_14', 'vit_l_14', ], value='vit_h_14', )
|
161 |
+
with gr.Accordion('WD14参数', open=True):
|
162 |
+
image2text_model = gr.Radio(
|
163 |
+
[
|
164 |
+
"SwinV2",
|
165 |
+
"ConvNext",
|
166 |
+
"ConvNextV2",
|
167 |
+
"ViT",
|
168 |
+
],
|
169 |
+
value="ConvNextV2",
|
170 |
+
label="Model"
|
171 |
+
)
|
172 |
+
general_threshold = gr.Slider(
|
173 |
+
0,
|
174 |
+
1,
|
175 |
+
step=0.05,
|
176 |
+
value=0.35,
|
177 |
+
label="General Tags Threshold",
|
178 |
+
)
|
179 |
+
character_threshold = gr.Slider(
|
180 |
+
0,
|
181 |
+
1,
|
182 |
+
step=0.05,
|
183 |
+
value=0.85,
|
184 |
+
label="Character Tags Threshold",
|
185 |
+
)
|
186 |
+
img_prompter_btn.click(
|
187 |
+
fn=image_generate_prompter,
|
188 |
+
inputs=[output_blip_or_clip, output_w14, max_new_tokens, nub_beams, num_return_sequences, length_penalty],
|
189 |
+
outputs=images_generate_prompter_output,
|
190 |
+
)
|
191 |
+
translate_btn.click(
|
192 |
+
fn=translate_zh2en,
|
193 |
+
inputs=input_text,
|
194 |
+
outputs=translate_output
|
195 |
+
)
|
196 |
+
generate_prompter_btn.click(
|
197 |
+
fn=generate_prompter,
|
198 |
+
inputs=[translate_output, max_new_tokens, nub_beams, num_return_sequences, length_penalty],
|
199 |
+
outputs=generate_prompter_output
|
200 |
+
)
|
201 |
+
gpt_btn.click(
|
202 |
+
fn=text_generate,
|
203 |
+
inputs=translate_output,
|
204 |
+
outputs=[output, output_zh]
|
205 |
+
)
|
206 |
+
img_w14_btn.click(
|
207 |
+
fn=w14_image2text,
|
208 |
+
inputs=[input_image, image2text_model, general_threshold, character_threshold],
|
209 |
+
outputs=[
|
210 |
+
output_w14,
|
211 |
+
w14_raw_output,
|
212 |
+
w14_booru_output,
|
213 |
+
w14_rating_output,
|
214 |
+
w14_characters_output,
|
215 |
+
w14_tags_output
|
216 |
+
]
|
217 |
+
)
|
218 |
+
|
219 |
+
img_blip_btn.click(
|
220 |
+
fn=git_image2text,
|
221 |
+
inputs=[input_image, blip_max_length],
|
222 |
+
outputs=output_blip_or_clip
|
223 |
+
)
|
224 |
+
img_clip_btn.click(
|
225 |
+
fn=clip_image2text,
|
226 |
+
inputs=[input_image, clip_mode_type, clip_model_name],
|
227 |
+
outputs=output_blip_or_clip
|
228 |
+
)
|
229 |
+
|
230 |
+
img_exif_btn.click(
|
231 |
+
fn=get_image_info,
|
232 |
+
inputs=input_image,
|
233 |
+
outputs=exif_info
|
234 |
+
)
|
235 |
+
block.queue(max_size=64).launch(show_api=False, enable_queue=True, debug=True, share=False, server_name='0.0.0.0')
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers==4.27.4
|
2 |
+
sentencepiece==0.1.97
|
3 |
+
sacremoses==0.0.53
|
4 |
+
clip-interrogator==0.6.0
|
5 |
+
torch==2.0.0
|
6 |
+
gradio==3.24.1
|