|
import os |
|
import sys |
|
|
|
sys.path.append(os.path.join(os.path.dirname(__file__), "..", "..")) |
|
|
|
import timm |
|
import torch |
|
import torch.nn as nn |
|
from transformers import CLIPModel as CLIPTransformersModel |
|
|
|
from utils import configs |
|
from utils.functional import check_data_type_variable, get_device |
|
|
|
|
|
class CLIPModel(nn.Module): |
|
def __init__( |
|
self, |
|
model_clip_name: str, |
|
freeze_model: bool, |
|
pretrained_model: bool, |
|
num_classes: int, |
|
): |
|
super().__init__() |
|
self.model_clip_name = model_clip_name |
|
self.freeze_model = freeze_model |
|
self.pretrained_model = pretrained_model |
|
self.num_classes = num_classes |
|
self.device = get_device() |
|
|
|
self.check_arguments() |
|
self.init_model() |
|
|
|
def check_arguments(self): |
|
check_data_type_variable(self.model_clip_name, str) |
|
check_data_type_variable(self.freeze_model, bool) |
|
check_data_type_variable(self.pretrained_model, bool) |
|
check_data_type_variable(self.num_classes, int) |
|
|
|
if self.model_clip_name != configs.CLIP_NAME_MODEL: |
|
raise ValueError( |
|
f"Model clip name must be {configs.CLIP_NAME_MODEL}, but it is {self.model_clip_name}" |
|
) |
|
|
|
def init_model(self): |
|
self.clip_model = CLIPTransformersModel.from_pretrained(self.model_clip_name) |
|
for layer in self.clip_model.children(): |
|
if hasattr(layer, "reset_parameters") and not self.pretrained_model: |
|
layer.reset_parameters() |
|
for param in self.clip_model.parameters(): |
|
param.required_grad = False if not self.freeze_model else True |
|
self.vision_model = self.clip_model.vision_model.to(self.device) |
|
self.visual_projection = self.clip_model.visual_projection.to(self.device).to( |
|
self.device |
|
) |
|
self.classifier = nn.Linear( |
|
512, 1 if self.num_classes in (1, 2) else self.num_classes |
|
).to(self.device) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
x = self.vision_model(x) |
|
x = self.visual_projection(x.pooler_output) |
|
x = self.classifier(x) |
|
return x |
|
|
|
|
|
class TorchModel(nn.Module): |
|
def __init__( |
|
self, |
|
name_model: str, |
|
freeze_model: bool, |
|
pretrained_model: bool, |
|
num_classes: int, |
|
): |
|
super().__init__() |
|
self.name_model = name_model |
|
self.freeze_model = freeze_model |
|
self.pretrained_model = pretrained_model |
|
self.num_classes = num_classes |
|
self.device = get_device() |
|
|
|
self.check_arguments() |
|
self.init_model() |
|
|
|
def check_arguments(self): |
|
check_data_type_variable(self.name_model, str) |
|
check_data_type_variable(self.freeze_model, bool) |
|
check_data_type_variable(self.pretrained_model, bool) |
|
check_data_type_variable(self.num_classes, int) |
|
|
|
if self.name_model not in tuple(configs.NAME_MODELS.keys()): |
|
raise ValueError( |
|
f"Name model must be in {tuple(configs.NAME_MODELS.keys())}, but it is {self.name_model}" |
|
) |
|
|
|
def init_model(self): |
|
self.model = timm.create_model( |
|
self.name_model, pretrained=self.pretrained_model, num_classes=0 |
|
).to(self.device) |
|
for param in self.model.parameters(): |
|
param.required_grad = False if not self.freeze_model else True |
|
self.classifier = nn.Linear( |
|
self.model.num_features, |
|
1 if self.num_classes in (1, 2) else self.num_classes, |
|
).to(self.device) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
x = self.model(x) |
|
x = self.classifier(x) |
|
return x |
|
|