Spaces:
Runtime error
Runtime error
import streamlit as st | |
from datasets import load_dataset | |
import networkx as nx | |
import numpy as np | |
import pandas as pd | |
dataset = load_dataset("roneneldan/TinyStories") | |
st.markdown('# Short Stories, networks and connections') | |
st.markdown('In this example we consider the semantic similarity between short stories generatited by GenAI.') | |
st.markdown('We study the relationshis between the stories using a network. The laplacian connectivity provides inights about the closeness of the graph') | |
st.markdown('## Short Stories') | |
st.markdown('We are using a sample fo the [TinyStories](roneneldan/TinyStories) dataset from roneneldan work') | |
text_text = dataset['train'][10]['text'] | |
st.markdown("<span style='color:red'>" + text_text.replace('\n',' ') + "</span>",unsafe_allow_html=True) | |
st.markdown('The threshold changes the level of connectivity in the network. The reange is from 0 (less similar) to 1 (completely similar)') | |
threshhold = st.slider('Threshhold',0.0,1.0,step=0.1) | |
#------------------------------------------------------------- | |
#------------------------------------------------------------- | |
from sentence_transformers import SentenceTransformer, util | |
model = SentenceTransformer('all-MiniLM-L6-v2') | |
# Sentences from the data set | |
#sentences = [item['text'] for item in dataset['train'][:10]] | |
#sentences = [dataset['train'][0],dataset['train'][1],dataset['train'][2]] | |
sentences = [dataset['train'][ii] for ii in range(10)] | |
#Compute embedding | |
embeddings = model.encode(sentences, convert_to_tensor=True) | |
#Compute cosine-similarities | |
cosine_scores = util.cos_sim(embeddings, embeddings) | |
# creating adjacency matrix | |
A = np.zeros((len(sentences),len(sentences))) | |
#Output the pairs with their score | |
for i in range(len(sentences)): | |
for j in range(i): | |
#st.write("{} \t\t {} \t\t Score: {:.4f}".format(sentences[i], sentences[j], cosine_scores[i][j])) | |
A[i][j] = cosine_scores[i][j] | |
A[j][i] = cosine_scores[i][j] | |
#G = nx.from_numpy_array(A) | |
G = nx.from_numpy_array(cosine_scores.numpy()>threshhold) | |
st.markdown('We can visualize the similarity between the shorts stories as a network. It the similarity is greater than the threshold, the two nodes are conencted') | |
#------------------------------------------------------------- | |
#------------------------------------------------------------- | |
# ego_graph.py | |
# An example of how to plot a node's ego network | |
# (egonet). This indirectly showcases slightly more involved | |
# interoperability between streamlit-agraph and networkx. | |
# An egonet can be # created from (almost) any network (graph), | |
# and exemplifies the # concept of a subnetwork (subgraph): | |
# A node's egonet is the (sub)network comprised of the focal node | |
# and all the nodes to whom it is adjacent. The edges included | |
# in the egonet are those nodes are both included in the aforementioned | |
# nodes. | |
# Use the following command to launch the app | |
# streamlit run <path-to-script>.py | |
# standard library dependencies | |
from operator import itemgetter | |
# external dependencies | |
import networkx as nx | |
from streamlit_agraph import agraph, Node, Edge, Config | |
# First create a graph using the Barabasi-Albert model | |
n = 2000 | |
m = 2 | |
#G = nx.generators.barabasi_albert_graph(n, m, seed=2023) | |
# Then find the node with the largest degree; | |
# This node's egonet will be the focus of this example. | |
node_and_degree = G.degree() | |
most_connected_node = sorted(G.degree, key=lambda x: x[1], reverse=True)[0] | |
degree = G.degree(most_connected_node) | |
# Create egonet for the focal node | |
hub_ego = nx.ego_graph(G, most_connected_node[0]) | |
# Now create the equivalent Node and Edge lists | |
nodes = [Node(title=str(sentences[i]['text']), id=i, label='node_'+str(i), size=20) for i in hub_ego.nodes] | |
edges = [Edge(source=i, target=j, type="CURVE_SMOOTH") for (i,j) in G.edges | |
if i in hub_ego.nodes and j in hub_ego.nodes] | |
config = Config(width=500, | |
height=500, | |
directed=True, | |
nodeHighlightBehavior=False, | |
highlightColor="#F7A7A6", # or "blue" | |
collapsible=False, | |
node={'labelProperty':'label'}, | |
# **kwargs e.g. node_size=1000 or node_color="blue" | |
) | |
return_value = agraph(nodes=nodes, | |
edges=edges, | |
config=config) | |
st.markdown('The Laplacian centrality is a measure of closeness') | |
st.write(str(nx.laplacian_centrality(G))) | |
d_lc = nx.laplacian_centrality(G) | |
#st.write(d_lc[0]) | |
#df_lc = pd.DataFrame.from_dict(nx.laplacian_centrality(G)) | |
df_lc = pd.DataFrame(np.transpose([list(d_lc.keys()),list(d_lc.values())]),columns=['node','laplacian_centrality']) | |
st.bar_chart(df_lc,x='node',y='laplacian_centrality') |