hackergeek98 commited on
Commit
d29b7da
·
verified ·
1 Parent(s): 5ae42a2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +87 -16
app.py CHANGED
@@ -1,6 +1,7 @@
1
  import torch
2
  import gradio as gr
3
  import os
 
4
  from transformers import (
5
  AutoModelForCausalLM,
6
  AutoTokenizer,
@@ -8,26 +9,96 @@ from transformers import (
8
  Trainer,
9
  DataCollatorForLanguageModeling
10
  )
 
11
 
12
- # Force CPU mode
13
  os.environ["CUDA_VISIBLE_DEVICES"] = ""
14
  os.environ["BITSANDBYTES_NOWELCOME"] = "1"
15
 
 
 
 
16
  def train():
17
- model = AutoModelForCausalLM.from_pretrained(
18
- "microsoft/phi-2",
19
- device_map="auto",
20
- trust_remote_code=True,
21
- load_in_4bit=False # Disable quantization
22
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
 
24
- training_args = TrainingArguments(
25
- output_dir="./results",
26
- per_device_train_batch_size=2,
27
- num_train_epochs=3,
28
- use_cpu=True, # Explicit CPU usage
29
- fp16=False,
30
- bf16=False,
31
  )
32
-
33
- # Rest of training code...
 
 
1
  import torch
2
  import gradio as gr
3
  import os
4
+ import logging
5
  from transformers import (
6
  AutoModelForCausalLM,
7
  AutoTokenizer,
 
9
  Trainer,
10
  DataCollatorForLanguageModeling
11
  )
12
+ from datasets import load_dataset
13
 
14
+ # Force CPU-only mode
15
  os.environ["CUDA_VISIBLE_DEVICES"] = ""
16
  os.environ["BITSANDBYTES_NOWELCOME"] = "1"
17
 
18
+ # Configure logging
19
+ logging.basicConfig(level=logging.INFO)
20
+
21
  def train():
22
+ try:
23
+ # Load model and tokenizer
24
+ model_name = "microsoft/phi-2"
25
+ tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
26
+ model = AutoModelForCausalLM.from_pretrained(
27
+ model_name,
28
+ device_map="cpu",
29
+ trust_remote_code=True,
30
+ load_in_4bit=False # Disable quantization
31
+ )
32
+
33
+ # Add padding token
34
+ tokenizer.pad_token = tokenizer.eos_token
35
+
36
+ # Load sample dataset
37
+ dataset = load_dataset("wikitext", "wikitext-2-raw-v1")
38
+
39
+ # Tokenization function
40
+ def tokenize_function(examples):
41
+ return tokenizer(
42
+ examples["text"],
43
+ padding="max_length",
44
+ truncation=True,
45
+ max_length=256,
46
+ return_tensors="pt",
47
+ )
48
+
49
+ tokenized_dataset = dataset.map(
50
+ tokenize_function,
51
+ batched=True,
52
+ remove_columns=["text"]
53
+ )
54
+
55
+ # Data collator
56
+ data_collator = DataCollatorForLanguageModeling(
57
+ tokenizer=tokenizer,
58
+ mlm=False
59
+ )
60
+
61
+ # Training arguments
62
+ training_args = TrainingArguments(
63
+ output_dir="./results",
64
+ per_device_train_batch_size=2,
65
+ per_device_eval_batch_size=2,
66
+ num_train_epochs=1, # Reduced for testing
67
+ logging_dir="./logs",
68
+ fp16=False,
69
+ bf16=False,
70
+ use_cpu=True # Explicit CPU usage
71
+ )
72
+
73
+ # Trainer
74
+ trainer = Trainer(
75
+ model=model,
76
+ args=training_args,
77
+ train_dataset=tokenized_dataset["train"],
78
+ data_collator=data_collator,
79
+ )
80
+
81
+ # Start training
82
+ logging.info("Starting training...")
83
+ trainer.train()
84
+ logging.info("Training completed!")
85
+
86
+ return "✅ Training successful! Model saved."
87
+
88
+ except Exception as e:
89
+ logging.error(f"Error: {str(e)}")
90
+ return f"❌ Training failed: {str(e)}"
91
+
92
+ # Gradio interface
93
+ with gr.Blocks() as demo:
94
+ gr.Markdown("# Phi-2 CPU Training")
95
+ start_btn = gr.Button("Start Training")
96
+ output = gr.Textbox()
97
 
98
+ start_btn.click(
99
+ fn=train,
100
+ outputs=output
 
 
 
 
101
  )
102
+
103
+ if __name__ == "__main__":
104
+ demo.launch(server_name="0.0.0.0", server_port=7860)