Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ============================================================
|
| 2 |
+
# DELCAP — Medical Image Captioning (Hugging Face Space)
|
| 3 |
+
# ============================================================
|
| 4 |
+
|
| 5 |
+
# ------------------------------
|
| 6 |
+
# Install dependencies (if needed)
|
| 7 |
+
# ------------------------------
|
| 8 |
+
!pip install torch torchvision --quiet
|
| 9 |
+
!pip install huggingface_hub --quiet
|
| 10 |
+
!pip install nltk --quiet
|
| 11 |
+
!pip install gradio --quiet
|
| 12 |
+
|
| 13 |
+
import torch
|
| 14 |
+
import torch.nn as nn
|
| 15 |
+
import torchvision.models as models
|
| 16 |
+
import torchvision.transforms as transforms
|
| 17 |
+
|
| 18 |
+
import json
|
| 19 |
+
import nltk
|
| 20 |
+
from PIL import Image
|
| 21 |
+
from collections import Counter
|
| 22 |
+
from huggingface_hub import hf_hub_download
|
| 23 |
+
|
| 24 |
+
import gradio as gr
|
| 25 |
+
|
| 26 |
+
# Ensure punkt tokenizer is available
|
| 27 |
+
nltk.download("punkt")
|
| 28 |
+
|
| 29 |
+
# ============================================================
|
| 30 |
+
# Configuration
|
| 31 |
+
# ============================================================
|
| 32 |
+
class Config:
|
| 33 |
+
IMG_SIZE = 224
|
| 34 |
+
EMBED_SIZE = 256
|
| 35 |
+
HIDDEN_SIZE = 512
|
| 36 |
+
NUM_LSTM_LAYERS = 1
|
| 37 |
+
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 38 |
+
MAX_CAPTION_LENGTH = 50
|
| 39 |
+
|
| 40 |
+
config = Config()
|
| 41 |
+
|
| 42 |
+
# ============================================================
|
| 43 |
+
# Tokenization
|
| 44 |
+
# ============================================================
|
| 45 |
+
def tokenize_caption(text):
|
| 46 |
+
return nltk.word_tokenize(text.lower())
|
| 47 |
+
|
| 48 |
+
# ============================================================
|
| 49 |
+
# Vocabulary
|
| 50 |
+
# ============================================================
|
| 51 |
+
class Vocabulary:
|
| 52 |
+
def __init__(self, freq_threshold=1):
|
| 53 |
+
self.itos = {
|
| 54 |
+
0: "<pad>",
|
| 55 |
+
1: "<unk>",
|
| 56 |
+
2: "<sos>",
|
| 57 |
+
3: "<eos>"
|
| 58 |
+
}
|
| 59 |
+
self.stoi = {v: k for k, v in self.itos.items()}
|
| 60 |
+
self.freq_threshold = freq_threshold
|
| 61 |
+
self.vocab_size = len(self.itos)
|
| 62 |
+
|
| 63 |
+
def __len__(self):
|
| 64 |
+
return self.vocab_size
|
| 65 |
+
|
| 66 |
+
@classmethod
|
| 67 |
+
def from_json(cls, json_data):
|
| 68 |
+
vocab_obj = cls()
|
| 69 |
+
vocab_obj.stoi = json_data['stoi']
|
| 70 |
+
vocab_obj.itos = {int(k): v for k, v in json_data['itos'].items()}
|
| 71 |
+
vocab_obj.vocab_size = len(vocab_obj.stoi)
|
| 72 |
+
return vocab_obj
|
| 73 |
+
|
| 74 |
+
def idx_to_word(self, idx):
|
| 75 |
+
return self.itos.get(idx, "<unk>")
|
| 76 |
+
|
| 77 |
+
# ============================================================
|
| 78 |
+
# Encoder
|
| 79 |
+
# ============================================================
|
| 80 |
+
class EncoderCNN(nn.Module):
|
| 81 |
+
def __init__(self, embed_size):
|
| 82 |
+
super().__init__()
|
| 83 |
+
densenet = models.densenet121(weights=models.DenseNet121_Weights.DEFAULT)
|
| 84 |
+
self.densenet_features = densenet.features
|
| 85 |
+
|
| 86 |
+
for param in self.densenet_features.parameters():
|
| 87 |
+
param.requires_grad_(False)
|
| 88 |
+
|
| 89 |
+
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
|
| 90 |
+
self.embed = nn.Linear(1024, embed_size)
|
| 91 |
+
|
| 92 |
+
def forward(self, images):
|
| 93 |
+
features = self.densenet_features(images)
|
| 94 |
+
features = self.avgpool(features)
|
| 95 |
+
features = features.view(features.size(0), -1)
|
| 96 |
+
features = self.embed(features)
|
| 97 |
+
return features
|
| 98 |
+
|
| 99 |
+
# ============================================================
|
| 100 |
+
# Decoder
|
| 101 |
+
# ============================================================
|
| 102 |
+
class DecoderRNN(nn.Module):
|
| 103 |
+
def __init__(self, embed_size, hidden_size, vocab_size, num_layers=1):
|
| 104 |
+
super().__init__()
|
| 105 |
+
self.embed = nn.Embedding(vocab_size, embed_size)
|
| 106 |
+
self.lstm = nn.LSTM(embed_size, hidden_size, num_layers, batch_first=True)
|
| 107 |
+
self.linear = nn.Linear(hidden_size, vocab_size)
|
| 108 |
+
self.dropout = nn.Dropout(0.5)
|
| 109 |
+
self.num_layers = num_layers
|
| 110 |
+
self.hidden_size = hidden_size
|
| 111 |
+
self.feature_to_hidden_state = nn.Linear(embed_size, hidden_size)
|
| 112 |
+
|
| 113 |
+
def sample(self, features, max_len=20, vocab=None):
|
| 114 |
+
self.eval()
|
| 115 |
+
with torch.no_grad():
|
| 116 |
+
sampled_ids = []
|
| 117 |
+
initial_hidden = self.feature_to_hidden_state(features)
|
| 118 |
+
h = initial_hidden.unsqueeze(0).repeat(self.num_layers, 1, 1)
|
| 119 |
+
c = initial_hidden.unsqueeze(0).repeat(self.num_layers, 1, 1)
|
| 120 |
+
hidden = (h, c)
|
| 121 |
+
|
| 122 |
+
start_token = torch.tensor([vocab.stoi["<sos>"]], device=features.device)
|
| 123 |
+
inputs = self.embed(start_token).unsqueeze(1)
|
| 124 |
+
|
| 125 |
+
for _ in range(max_len):
|
| 126 |
+
output, hidden = self.lstm(inputs, hidden)
|
| 127 |
+
logits = self.linear(self.dropout(output.squeeze(1)))
|
| 128 |
+
_, predicted = logits.max(1)
|
| 129 |
+
sampled_ids.append(predicted)
|
| 130 |
+
|
| 131 |
+
if predicted.item() == vocab.stoi["<eos>"]:
|
| 132 |
+
break
|
| 133 |
+
|
| 134 |
+
inputs = self.embed(predicted).unsqueeze(1)
|
| 135 |
+
|
| 136 |
+
return torch.stack(sampled_ids)
|
| 137 |
+
|
| 138 |
+
# ============================================================
|
| 139 |
+
# Load Vocabulary & Models
|
| 140 |
+
# ============================================================
|
| 141 |
+
vocab_path = hf_hub_download("hackergeek/delcap", "vocab.json")
|
| 142 |
+
with open(vocab_path, "r") as f:
|
| 143 |
+
vocab_data = json.load(f)
|
| 144 |
+
vocab = Vocabulary.from_json(vocab_data)
|
| 145 |
+
|
| 146 |
+
encoder_path = hf_hub_download("hackergeek/delcap", "encoder.pth")
|
| 147 |
+
decoder_path = hf_hub_download("hackergeek/delcap", "decoder.pth")
|
| 148 |
+
|
| 149 |
+
encoder = EncoderCNN(config.EMBED_SIZE).to(config.DEVICE)
|
| 150 |
+
encoder.load_state_dict(torch.load(encoder_path, map_location=config.DEVICE))
|
| 151 |
+
|
| 152 |
+
decoder_state = torch.load(decoder_path, map_location=config.DEVICE)
|
| 153 |
+
vocab_size = decoder_state["linear.weight"].shape[0]
|
| 154 |
+
|
| 155 |
+
decoder = DecoderRNN(config.EMBED_SIZE, config.HIDDEN_SIZE, vocab_size).to(config.DEVICE)
|
| 156 |
+
decoder.load_state_dict(decoder_state)
|
| 157 |
+
|
| 158 |
+
encoder.eval()
|
| 159 |
+
decoder.eval()
|
| 160 |
+
|
| 161 |
+
# ============================================================
|
| 162 |
+
# Image Preprocessing
|
| 163 |
+
# ============================================================
|
| 164 |
+
transform = transforms.Compose([
|
| 165 |
+
transforms.Resize((config.IMG_SIZE, config.IMG_SIZE)),
|
| 166 |
+
transforms.ToTensor(),
|
| 167 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
| 168 |
+
std=[0.229, 0.224, 0.225]),
|
| 169 |
+
])
|
| 170 |
+
|
| 171 |
+
# ============================================================
|
| 172 |
+
# Caption Generation
|
| 173 |
+
# ============================================================
|
| 174 |
+
def generate_caption(image: Image.Image):
|
| 175 |
+
image_tensor = transform(image).unsqueeze(0).to(config.DEVICE)
|
| 176 |
+
with torch.no_grad():
|
| 177 |
+
features = encoder(image_tensor)
|
| 178 |
+
sampled_ids = decoder.sample(features, max_len=config.MAX_CAPTION_LENGTH, vocab=vocab)
|
| 179 |
+
|
| 180 |
+
caption = []
|
| 181 |
+
for token in sampled_ids.cpu().numpy():
|
| 182 |
+
word = vocab.idx_to_word(token.item())
|
| 183 |
+
if word in ["<sos>", "<pad>"]:
|
| 184 |
+
continue
|
| 185 |
+
if word == "<eos>":
|
| 186 |
+
break
|
| 187 |
+
caption.append(word)
|
| 188 |
+
return " ".join(caption)
|
| 189 |
+
|
| 190 |
+
# ============================================================
|
| 191 |
+
# Gradio Interface
|
| 192 |
+
# ============================================================
|
| 193 |
+
iface = gr.Interface(
|
| 194 |
+
fn=generate_caption,
|
| 195 |
+
inputs=gr.Image(type="pil"),
|
| 196 |
+
outputs=gr.Textbox(label="Generated Caption"),
|
| 197 |
+
title="DELCAP — Medical Image Captioning",
|
| 198 |
+
description="Upload a medical image and get a generated caption."
|
| 199 |
+
)
|
| 200 |
+
|
| 201 |
+
iface.launch()
|