Spaces:
Running
on
Zero
Running
on
Zero
forplaytvplus
commited on
Commit
•
ddb9a25
1
Parent(s):
ccb155c
Update app.py
Browse files
app.py
CHANGED
@@ -77,24 +77,24 @@ def generate(
|
|
77 |
if torch.cuda.is_available():
|
78 |
|
79 |
if not use_img2img:
|
80 |
-
pipe = DiffusionPipeline.from_pretrained(model, safety_checker=None, requires_safety_checker=False, torch_dtype=torch.float16)
|
81 |
|
82 |
if use_vae:
|
83 |
-
vae = AutoencoderKL.from_pretrained(vaecall, torch_dtype=torch.float16)
|
84 |
-
pipe = DiffusionPipeline.from_pretrained(model, vae=vae, safety_checker=None, requires_safety_checker=False, torch_dtype=torch.float16)
|
85 |
|
86 |
if use_img2img:
|
87 |
-
pipe = AutoPipelineForImage2Image.from_pretrained(model, safety_checker=None, requires_safety_checker=False, torch_dtype=torch.float16)
|
88 |
|
89 |
init_image = load_image(url)
|
90 |
|
91 |
if use_vae:
|
92 |
-
vae = AutoencoderKL.from_pretrained(vaecall, torch_dtype=torch.float16)
|
93 |
-
pipe = AutoPipelineForImage2Image.from_pretrained(model, vae=vae, safety_checker=None, requires_safety_checker=False, torch_dtype=torch.float16)
|
94 |
|
95 |
if use_controlnet:
|
96 |
-
controlnet = ControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.float16)
|
97 |
-
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(model, safety_checker=None, requires_safety_checker=False, controlnet=controlnet, torch_dtype=torch.float16)
|
98 |
|
99 |
image = load_image(controlnet_img)
|
100 |
|
@@ -105,12 +105,12 @@ def generate(
|
|
105 |
image = Image.fromarray(image)
|
106 |
|
107 |
if use_vae:
|
108 |
-
vae = AutoencoderKL.from_pretrained(vaecall, torch_dtype=torch.float16)
|
109 |
-
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(model, safety_checker=None, requires_safety_checker=False, controlnet=controlnet, vae=vae, torch_dtype=torch.float16)
|
110 |
|
111 |
if use_controlnetinpaint:
|
112 |
-
controlnet = ControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.float16)
|
113 |
-
pipe = StableDiffusionXLControlNetInpaintPipeline.from_pretrained(model, safety_checker=None, requires_safety_checker=False, controlnet=controlnet, torch_dtype=torch.float16)
|
114 |
|
115 |
image_start = load_image(controlnet_img)
|
116 |
image = load_image(controlnet_img)
|
@@ -123,8 +123,8 @@ def generate(
|
|
123 |
image = Image.fromarray(image)
|
124 |
|
125 |
if use_vae:
|
126 |
-
vae = AutoencoderKL.from_pretrained(vaecall, torch_dtype=torch.float16)
|
127 |
-
pipe = StableDiffusionXLControlNetInpaintPipeline.from_pretrained(model, safety_checker=None, requires_safety_checker=False, controlnet=controlnet, vae=vae, torch_dtype=torch.float16)
|
128 |
|
129 |
if use_lora:
|
130 |
pipe.load_lora_weights(lora, adapter_name="1")
|
@@ -474,4 +474,4 @@ with gr.Blocks(theme=gr.themes.Soft(), css="style.css") as demo:
|
|
474 |
)
|
475 |
|
476 |
if __name__ == "__main__":
|
477 |
-
demo.queue(max_size=20, default_concurrency_limit=
|
|
|
77 |
if torch.cuda.is_available():
|
78 |
|
79 |
if not use_img2img:
|
80 |
+
pipe = DiffusionPipeline.from_pretrained(model, safety_checker=None, requires_safety_checker=False, torch_dtype=torch.float16, device_map="balanced", low_cpu_mem_usage=True)
|
81 |
|
82 |
if use_vae:
|
83 |
+
vae = AutoencoderKL.from_pretrained(vaecall, torch_dtype=torch.float16, device_map="balanced", low_cpu_mem_usage=True)
|
84 |
+
pipe = DiffusionPipeline.from_pretrained(model, vae=vae, safety_checker=None, requires_safety_checker=False, torch_dtype=torch.float16, device_map="balanced", low_cpu_mem_usage=True)
|
85 |
|
86 |
if use_img2img:
|
87 |
+
pipe = AutoPipelineForImage2Image.from_pretrained(model, safety_checker=None, requires_safety_checker=False, torch_dtype=torch.float16, device_map="balanced", low_cpu_mem_usage=True)
|
88 |
|
89 |
init_image = load_image(url)
|
90 |
|
91 |
if use_vae:
|
92 |
+
vae = AutoencoderKL.from_pretrained(vaecall, torch_dtype=torch.float16, device_map="balanced", low_cpu_mem_usage=True)
|
93 |
+
pipe = AutoPipelineForImage2Image.from_pretrained(model, vae=vae, safety_checker=None, requires_safety_checker=False, torch_dtype=torch.float16, device_map="balanced", low_cpu_mem_usage=True)
|
94 |
|
95 |
if use_controlnet:
|
96 |
+
controlnet = ControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.float16, device_map="balanced", low_cpu_mem_usage=True)
|
97 |
+
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(model, safety_checker=None, requires_safety_checker=False, controlnet=controlnet, torch_dtype=torch.float16, device_map="balanced", low_cpu_mem_usage=True)
|
98 |
|
99 |
image = load_image(controlnet_img)
|
100 |
|
|
|
105 |
image = Image.fromarray(image)
|
106 |
|
107 |
if use_vae:
|
108 |
+
vae = AutoencoderKL.from_pretrained(vaecall, torch_dtype=torch.float16, device_map="balanced", low_cpu_mem_usage=True)
|
109 |
+
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(model, safety_checker=None, requires_safety_checker=False, controlnet=controlnet, vae=vae, torch_dtype=torch.float16, device_map="balanced", low_cpu_mem_usage=True)
|
110 |
|
111 |
if use_controlnetinpaint:
|
112 |
+
controlnet = ControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.float16, device_map="balanced", low_cpu_mem_usage=True)
|
113 |
+
pipe = StableDiffusionXLControlNetInpaintPipeline.from_pretrained(model, safety_checker=None, requires_safety_checker=False, controlnet=controlnet, torch_dtype=torch.float16, device_map="balanced", low_cpu_mem_usage=True)
|
114 |
|
115 |
image_start = load_image(controlnet_img)
|
116 |
image = load_image(controlnet_img)
|
|
|
123 |
image = Image.fromarray(image)
|
124 |
|
125 |
if use_vae:
|
126 |
+
vae = AutoencoderKL.from_pretrained(vaecall, torch_dtype=torch.float16, device_map="balanced", low_cpu_mem_usage=True)
|
127 |
+
pipe = StableDiffusionXLControlNetInpaintPipeline.from_pretrained(model, safety_checker=None, requires_safety_checker=False, controlnet=controlnet, vae=vae, torch_dtype=torch.float16, device_map="balanced", low_cpu_mem_usage=True)
|
128 |
|
129 |
if use_lora:
|
130 |
pipe.load_lora_weights(lora, adapter_name="1")
|
|
|
474 |
)
|
475 |
|
476 |
if __name__ == "__main__":
|
477 |
+
demo.queue(max_size=20, default_concurrency_limit=2).launch()
|