Spaces:
Running
on
Zero
Running
on
Zero
forplaytvplus
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,26 @@
|
|
1 |
-
#!/usr/bin/env
|
2 |
|
3 |
from __future__ import annotations
|
4 |
|
5 |
import requests
|
6 |
import os
|
7 |
import random
|
|
|
|
|
8 |
|
9 |
import gradio as gr
|
10 |
import numpy as np
|
11 |
import spaces
|
12 |
import torch
|
|
|
13 |
import cv2
|
14 |
from PIL import Image
|
|
|
15 |
from io import BytesIO
|
16 |
from diffusers.utils import load_image
|
17 |
from diffusers import StableDiffusionXLControlNetPipeline, StableDiffusionXLControlNetInpaintPipeline, ControlNetModel, AutoencoderKL, DiffusionPipeline, AutoPipelineForImage2Image, AutoPipelineForInpainting, UNet2DConditionModel
|
18 |
from controlnet_aux import HEDdetector
|
|
|
19 |
|
20 |
DESCRIPTION = "# Run any LoRA or SD Model"
|
21 |
if not torch.cuda.is_available():
|
@@ -27,10 +32,7 @@ USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
|
|
27 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
|
28 |
ENABLE_USE_LORA = os.getenv("ENABLE_USE_LORA", "1") == "1"
|
29 |
ENABLE_USE_LORA2 = os.getenv("ENABLE_USE_LORA2", "1") == "1"
|
30 |
-
ENABLE_USE_VAE = os.getenv("ENABLE_USE_VAE", "1") == "1"
|
31 |
ENABLE_USE_IMG2IMG = os.getenv("ENABLE_USE_IMG2IMG", "1") == "1"
|
32 |
-
ENABLE_USE_CONTROLNET = os.getenv("ENABLE_USE_CONTROLNET", "1") == "1"
|
33 |
-
ENABLE_USE_CONTROLNETINPAINT = os.getenv("ENABLE_USE_CONTROLNETINPAINT", "1") == "1"
|
34 |
|
35 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
36 |
|
@@ -39,6 +41,11 @@ def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
|
39 |
seed = random.randint(0, MAX_SEED)
|
40 |
return seed
|
41 |
|
|
|
|
|
|
|
|
|
|
|
42 |
@spaces.GPU
|
43 |
def generate(
|
44 |
prompt: str = "",
|
@@ -53,88 +60,62 @@ def generate(
|
|
53 |
height: int = 1024,
|
54 |
guidance_scale_base: float = 5.0,
|
55 |
num_inference_steps_base: int = 25,
|
56 |
-
controlnet_conditioning_scale: float = 1,
|
57 |
-
control_guidance_start: float = 0,
|
58 |
-
control_guidance_end: float = 1,
|
59 |
strength_img2img: float = 0.7,
|
60 |
-
use_vae: bool = False,
|
61 |
use_lora: bool = False,
|
62 |
use_lora2: bool = False,
|
63 |
model = 'stabilityai/stable-diffusion-xl-base-1.0',
|
64 |
-
vaecall = 'madebyollin/sdxl-vae-fp16-fix',
|
65 |
lora = '',
|
66 |
lora2 = '',
|
67 |
-
controlnet_model = 'diffusers/controlnet-canny-sdxl-1.0',
|
68 |
lora_scale: float = 0.7,
|
69 |
lora_scale2: float = 0.7,
|
70 |
use_img2img: bool = False,
|
71 |
-
use_controlnet: bool = False,
|
72 |
-
use_controlnetinpaint: bool = False,
|
73 |
url = '',
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
if torch.cuda.is_available():
|
|
|
|
|
78 |
|
79 |
-
if not
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
if use_img2img:
|
87 |
-
pipe = AutoPipelineForImage2Image.from_pretrained(model, safety_checker=None, requires_safety_checker=False, torch_dtype=torch.float16, device_map="balanced", low_cpu_mem_usage=True)
|
88 |
|
|
|
89 |
init_image = load_image(url)
|
90 |
-
|
91 |
-
if use_vae:
|
92 |
-
vae = AutoencoderKL.from_pretrained(vaecall, torch_dtype=torch.float16, device_map="balanced", low_cpu_mem_usage=True)
|
93 |
-
pipe = AutoPipelineForImage2Image.from_pretrained(model, vae=vae, safety_checker=None, requires_safety_checker=False, torch_dtype=torch.float16, device_map="balanced", low_cpu_mem_usage=True)
|
94 |
-
|
95 |
-
if use_controlnet:
|
96 |
-
controlnet = ControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.float16, device_map="balanced", low_cpu_mem_usage=True)
|
97 |
-
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(model, safety_checker=None, requires_safety_checker=False, controlnet=controlnet, torch_dtype=torch.float16, device_map="balanced", low_cpu_mem_usage=True)
|
98 |
-
|
99 |
-
image = load_image(controlnet_img)
|
100 |
-
|
101 |
-
image = np.array(image)
|
102 |
-
image = cv2.Canny(image, 250, 255)
|
103 |
-
image = image[:, :, None]
|
104 |
-
image = np.concatenate([image, image, image], axis=2)
|
105 |
-
image = Image.fromarray(image)
|
106 |
-
|
107 |
-
if use_vae:
|
108 |
-
vae = AutoencoderKL.from_pretrained(vaecall, torch_dtype=torch.float16, device_map="balanced", low_cpu_mem_usage=True)
|
109 |
-
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(model, safety_checker=None, requires_safety_checker=False, controlnet=controlnet, vae=vae, torch_dtype=torch.float16, device_map="balanced", low_cpu_mem_usage=True)
|
110 |
-
|
111 |
-
if use_controlnetinpaint:
|
112 |
-
controlnet = ControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.float16, device_map="balanced", low_cpu_mem_usage=True)
|
113 |
-
pipe = StableDiffusionXLControlNetInpaintPipeline.from_pretrained(model, safety_checker=None, requires_safety_checker=False, controlnet=controlnet, torch_dtype=torch.float16, device_map="balanced", low_cpu_mem_usage=True)
|
114 |
-
|
115 |
-
image_start = load_image(controlnet_img)
|
116 |
-
image = load_image(controlnet_img)
|
117 |
-
image_mask = load_image(controlnet_img2img)
|
118 |
-
|
119 |
-
image = np.array(image)
|
120 |
-
image = cv2.Canny(image, 100, 200)
|
121 |
-
image = image[:, :, None]
|
122 |
-
image = np.concatenate([image, image, image], axis=2)
|
123 |
-
image = Image.fromarray(image)
|
124 |
-
|
125 |
-
if use_vae:
|
126 |
-
vae = AutoencoderKL.from_pretrained(vaecall, torch_dtype=torch.float16, device_map="balanced", low_cpu_mem_usage=True)
|
127 |
-
pipe = StableDiffusionXLControlNetInpaintPipeline.from_pretrained(model, safety_checker=None, requires_safety_checker=False, controlnet=controlnet, vae=vae, torch_dtype=torch.float16, device_map="balanced", low_cpu_mem_usage=True)
|
128 |
|
129 |
if use_lora:
|
130 |
-
|
131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
|
133 |
if use_lora2:
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
generator = torch.Generator().manual_seed(seed)
|
139 |
|
140 |
if not use_negative_prompt:
|
@@ -144,67 +125,39 @@ def generate(
|
|
144 |
if not use_negative_prompt_2:
|
145 |
negative_prompt_2 = None # type: ignore
|
146 |
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
return image
|
181 |
-
elif use_img2img:
|
182 |
-
images = pipe(
|
183 |
-
prompt=prompt,
|
184 |
-
image=init_image,
|
185 |
-
strength=strength_img2img,
|
186 |
-
negative_prompt=negative_prompt,
|
187 |
-
prompt_2=prompt_2,
|
188 |
-
negative_prompt_2=negative_prompt_2,
|
189 |
-
width=width,
|
190 |
-
height=height,
|
191 |
-
guidance_scale=guidance_scale_base,
|
192 |
-
num_inference_steps=num_inference_steps_base,
|
193 |
-
generator=generator,
|
194 |
-
).images[0]
|
195 |
-
return images
|
196 |
-
else:
|
197 |
-
return pipe(
|
198 |
-
prompt=prompt,
|
199 |
-
negative_prompt=negative_prompt,
|
200 |
-
prompt_2=prompt_2,
|
201 |
-
negative_prompt_2=negative_prompt_2,
|
202 |
-
width=width,
|
203 |
-
height=height,
|
204 |
-
guidance_scale=guidance_scale_base,
|
205 |
-
num_inference_steps=num_inference_steps_base,
|
206 |
-
generator=generator,
|
207 |
-
).images[0]
|
208 |
|
209 |
with gr.Blocks(theme=gr.themes.Soft(), css="style.css") as demo:
|
210 |
gr.HTML(
|
@@ -213,10 +166,8 @@ with gr.Blocks(theme=gr.themes.Soft(), css="style.css") as demo:
|
|
213 |
gr.Markdown(DESCRIPTION, elem_id="description")
|
214 |
with gr.Group():
|
215 |
model = gr.Text(label='Model', placeholder='e.g. stabilityai/stable-diffusion-xl-base-1.0')
|
216 |
-
vaecall = gr.Text(label='VAE', placeholder='e.g. madebyollin/sdxl-vae-fp16-fix')
|
217 |
lora = gr.Text(label='LoRA 1', placeholder='e.g. nerijs/pixel-art-xl')
|
218 |
lora2 = gr.Text(label='LoRA 2', placeholder='e.g. nerijs/pixel-art-xl')
|
219 |
-
controlnet_model = gr.Text(label='Controlnet', placeholder='e.g diffusers/controlnet-canny-sdxl-1.0')
|
220 |
lora_scale = gr.Slider(
|
221 |
info="The closer to 1, the more it will resemble LoRA, but errors may be visible.",
|
222 |
label="Lora Scale 1",
|
@@ -234,8 +185,6 @@ with gr.Blocks(theme=gr.themes.Soft(), css="style.css") as demo:
|
|
234 |
value=0.7,
|
235 |
)
|
236 |
url = gr.Text(label='URL (Img2Img)')
|
237 |
-
controlnet_img = gr.Text(label='URL (Controlnet)', placeholder='e.g https://example.com/image.png')
|
238 |
-
controlnet_inpaint = gr.Text(label='URL (Controlnet - IMG2IMG)', placeholder='e.g https://example.com/image.png')
|
239 |
with gr.Row():
|
240 |
prompt = gr.Text(
|
241 |
placeholder="Input prompt",
|
@@ -248,10 +197,7 @@ with gr.Blocks(theme=gr.themes.Soft(), css="style.css") as demo:
|
|
248 |
result = gr.Image(label="Result", show_label=False)
|
249 |
with gr.Accordion("Advanced options", open=False):
|
250 |
with gr.Row():
|
251 |
-
use_controlnet = gr.Checkbox(label='Use Controlnet', value=False, visible=ENABLE_USE_CONTROLNET)
|
252 |
-
use_controlnetinpaint = gr.Checkbox(label='Use Controlnet Img2Img', value=False, visible=ENABLE_USE_CONTROLNETINPAINT)
|
253 |
use_img2img = gr.Checkbox(label='Use Img2Img', value=False, visible=ENABLE_USE_IMG2IMG)
|
254 |
-
use_vae = gr.Checkbox(label='Use VAE', value=False, visible=ENABLE_USE_VAE)
|
255 |
use_lora = gr.Checkbox(label='Use Lora 1', value=False, visible=ENABLE_USE_LORA)
|
256 |
use_lora2 = gr.Checkbox(label='Use Lora 2', value=False, visible=ENABLE_USE_LORA2)
|
257 |
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False)
|
@@ -318,33 +264,6 @@ with gr.Blocks(theme=gr.themes.Soft(), css="style.css") as demo:
|
|
318 |
step=1,
|
319 |
value=25,
|
320 |
)
|
321 |
-
with gr.Row():
|
322 |
-
controlnet_conditioning_scale = gr.Slider(
|
323 |
-
info="controlnet_conditioning_scale",
|
324 |
-
label="controlnet_conditioning_scale",
|
325 |
-
minimum=0.01,
|
326 |
-
maximum=2,
|
327 |
-
step=0.01,
|
328 |
-
value=1,
|
329 |
-
)
|
330 |
-
with gr.Row():
|
331 |
-
control_guidance_start = gr.Slider(
|
332 |
-
info="control_guidance_start",
|
333 |
-
label="control_guidance_start",
|
334 |
-
minimum=0.01,
|
335 |
-
maximum=1,
|
336 |
-
step=0.01,
|
337 |
-
value=0,
|
338 |
-
)
|
339 |
-
with gr.Row():
|
340 |
-
control_guidance_end = gr.Slider(
|
341 |
-
info="control_guidance_end",
|
342 |
-
label="control_guidance_end",
|
343 |
-
minimum=0.01,
|
344 |
-
maximum=1,
|
345 |
-
step=0.01,
|
346 |
-
value=1,
|
347 |
-
)
|
348 |
with gr.Row():
|
349 |
strength_img2img = gr.Slider(
|
350 |
info="Strength for Img2Img",
|
@@ -376,13 +295,6 @@ with gr.Blocks(theme=gr.themes.Soft(), css="style.css") as demo:
|
|
376 |
queue=False,
|
377 |
api_name=False,
|
378 |
)
|
379 |
-
use_vae.change(
|
380 |
-
fn=lambda x: gr.update(visible=x),
|
381 |
-
inputs=use_vae,
|
382 |
-
outputs=vaecall,
|
383 |
-
queue=False,
|
384 |
-
api_name=False,
|
385 |
-
)
|
386 |
use_lora.change(
|
387 |
fn=lambda x: gr.update(visible=x),
|
388 |
inputs=use_lora,
|
@@ -404,20 +316,6 @@ with gr.Blocks(theme=gr.themes.Soft(), css="style.css") as demo:
|
|
404 |
queue=False,
|
405 |
api_name=False,
|
406 |
)
|
407 |
-
use_controlnet.change(
|
408 |
-
fn=lambda x: gr.update(visible=x),
|
409 |
-
inputs=use_controlnet,
|
410 |
-
outputs=controlnet_img,
|
411 |
-
queue=False,
|
412 |
-
api_name=False,
|
413 |
-
)
|
414 |
-
use_controlnetinpaint.change(
|
415 |
-
fn=lambda x: gr.update(visible=x),
|
416 |
-
inputs=use_controlnetinpaint,
|
417 |
-
outputs=controlnet_inpaint,
|
418 |
-
queue=False,
|
419 |
-
api_name=False,
|
420 |
-
)
|
421 |
|
422 |
gr.on(
|
423 |
triggers=[
|
@@ -447,30 +345,20 @@ with gr.Blocks(theme=gr.themes.Soft(), css="style.css") as demo:
|
|
447 |
height,
|
448 |
guidance_scale_base,
|
449 |
num_inference_steps_base,
|
450 |
-
controlnet_conditioning_scale,
|
451 |
-
control_guidance_start,
|
452 |
-
control_guidance_end,
|
453 |
strength_img2img,
|
454 |
-
use_vae,
|
455 |
use_lora,
|
456 |
use_lora2,
|
457 |
model,
|
458 |
-
vaecall,
|
459 |
lora,
|
460 |
lora2,
|
461 |
-
controlnet_model,
|
462 |
lora_scale,
|
463 |
lora_scale2,
|
464 |
use_img2img,
|
465 |
-
use_controlnet,
|
466 |
-
use_controlnetinpaint,
|
467 |
url,
|
468 |
-
controlnet_img,
|
469 |
-
controlnet_inpaint,
|
470 |
],
|
471 |
outputs=result,
|
472 |
api_name="run",
|
473 |
)
|
474 |
|
475 |
if __name__ == "__main__":
|
476 |
-
demo.queue(max_size=
|
|
|
1 |
+
#!/usr/bin/env pythona
|
2 |
|
3 |
from __future__ import annotations
|
4 |
|
5 |
import requests
|
6 |
import os
|
7 |
import random
|
8 |
+
import random
|
9 |
+
import string
|
10 |
|
11 |
import gradio as gr
|
12 |
import numpy as np
|
13 |
import spaces
|
14 |
import torch
|
15 |
+
import gc
|
16 |
import cv2
|
17 |
from PIL import Image
|
18 |
+
from accelerate import init_empty_weights
|
19 |
from io import BytesIO
|
20 |
from diffusers.utils import load_image
|
21 |
from diffusers import StableDiffusionXLControlNetPipeline, StableDiffusionXLControlNetInpaintPipeline, ControlNetModel, AutoencoderKL, DiffusionPipeline, AutoPipelineForImage2Image, AutoPipelineForInpainting, UNet2DConditionModel
|
22 |
from controlnet_aux import HEDdetector
|
23 |
+
import threading
|
24 |
|
25 |
DESCRIPTION = "# Run any LoRA or SD Model"
|
26 |
if not torch.cuda.is_available():
|
|
|
32 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
|
33 |
ENABLE_USE_LORA = os.getenv("ENABLE_USE_LORA", "1") == "1"
|
34 |
ENABLE_USE_LORA2 = os.getenv("ENABLE_USE_LORA2", "1") == "1"
|
|
|
35 |
ENABLE_USE_IMG2IMG = os.getenv("ENABLE_USE_IMG2IMG", "1") == "1"
|
|
|
|
|
36 |
|
37 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
38 |
|
|
|
41 |
seed = random.randint(0, MAX_SEED)
|
42 |
return seed
|
43 |
|
44 |
+
cached_pipelines = {} # Dicionário para armazenar os pipelines
|
45 |
+
cached_loras = {}
|
46 |
+
# Crie um objeto Lock
|
47 |
+
pipeline_lock = threading.Lock()
|
48 |
+
|
49 |
@spaces.GPU
|
50 |
def generate(
|
51 |
prompt: str = "",
|
|
|
60 |
height: int = 1024,
|
61 |
guidance_scale_base: float = 5.0,
|
62 |
num_inference_steps_base: int = 25,
|
|
|
|
|
|
|
63 |
strength_img2img: float = 0.7,
|
|
|
64 |
use_lora: bool = False,
|
65 |
use_lora2: bool = False,
|
66 |
model = 'stabilityai/stable-diffusion-xl-base-1.0',
|
|
|
67 |
lora = '',
|
68 |
lora2 = '',
|
|
|
69 |
lora_scale: float = 0.7,
|
70 |
lora_scale2: float = 0.7,
|
71 |
use_img2img: bool = False,
|
|
|
|
|
72 |
url = '',
|
73 |
+
):
|
74 |
+
global cached_pipelines, cached_loras
|
75 |
+
|
76 |
if torch.cuda.is_available():
|
77 |
+
# Construa a chave do dicionário baseada no modelo e no tipo de pipeline
|
78 |
+
pipeline_key = (model, use_img2img)
|
79 |
|
80 |
+
if pipeline_key not in cached_pipelines:
|
81 |
+
if not use_img2img:
|
82 |
+
cached_pipelines[pipeline_key] = DiffusionPipeline.from_pretrained(model, safety_checker=None, requires_safety_checker=False, torch_dtype=torch.float16, low_cpu_mem_usage=True)
|
83 |
+
elif use_img2img:
|
84 |
+
cached_pipelines[pipeline_key] = AutoPipelineForImage2Image.from_pretrained(model, safety_checker=None, requires_safety_checker=False, torch_dtype=torch.float16, low_cpu_mem_usage=True)
|
85 |
+
|
86 |
+
pipe = cached_pipelines[pipeline_key] # Usa o pipeline carregado da memória
|
|
|
|
|
87 |
|
88 |
+
if use_img2img:
|
89 |
init_image = load_image(url)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
if use_lora:
|
92 |
+
lora_key = (lora, lora_scale)
|
93 |
+
if lora_key not in cached_loras:
|
94 |
+
adapter_name = ''.join(random.choice(string.ascii_letters) for _ in range(5))
|
95 |
+
pipe.load_lora_weights(lora, adapter_name=adapter_name)
|
96 |
+
cached_loras[lora_key] = adapter_name
|
97 |
+
else:
|
98 |
+
adapter_name = cached_loras[lora_key]
|
99 |
+
pipe.set_adapters(adapter_name, adapter_weights=[lora_scale])
|
100 |
|
101 |
if use_lora2:
|
102 |
+
lora_key1 = (lora, lora_scale)
|
103 |
+
lora_key2 = (lora2, lora_scale2)
|
104 |
+
if lora_key1 not in cached_loras:
|
105 |
+
adapter_name1 = ''.join(random.choice(string.ascii_letters) for _ in range(5))
|
106 |
+
pipe.load_lora_weights(lora, adapter_name=adapter_name1)
|
107 |
+
cached_loras[lora_key1] = adapter_name1
|
108 |
+
else:
|
109 |
+
adapter_name1 = cached_loras[lora_key1]
|
110 |
+
if lora_key2 not in cached_loras:
|
111 |
+
adapter_name2 = ''.join(random.choice(string.ascii_letters) for _ in range(5))
|
112 |
+
pipe.load_lora_weights(lora2, adapter_name=adapter_name2)
|
113 |
+
cached_loras[lora_key2] = adapter_name2
|
114 |
+
else:
|
115 |
+
adapter_name2 = cached_loras[lora_key2]
|
116 |
+
pipe.set_adapters([adapter_name1, adapter_name2], adapter_weights=[lora_scale, lora_scale2])
|
117 |
+
|
118 |
+
pipe.to("cuda")
|
119 |
generator = torch.Generator().manual_seed(seed)
|
120 |
|
121 |
if not use_negative_prompt:
|
|
|
125 |
if not use_negative_prompt_2:
|
126 |
negative_prompt_2 = None # type: ignore
|
127 |
|
128 |
+
with pipeline_lock:
|
129 |
+
if use_img2img:
|
130 |
+
result = pipe(
|
131 |
+
prompt=prompt,
|
132 |
+
image=init_image,
|
133 |
+
strength=strength_img2img,
|
134 |
+
negative_prompt=negative_prompt,
|
135 |
+
prompt_2=prompt_2,
|
136 |
+
negative_prompt_2=negative_prompt_2,
|
137 |
+
width=width,
|
138 |
+
height=height,
|
139 |
+
guidance_scale=guidance_scale_base,
|
140 |
+
num_inference_steps=num_inference_steps_base,
|
141 |
+
generator=generator,
|
142 |
+
).images[0]
|
143 |
+
else:
|
144 |
+
result = pipe(
|
145 |
+
prompt=prompt,
|
146 |
+
negative_prompt=negative_prompt,
|
147 |
+
prompt_2=prompt_2,
|
148 |
+
negative_prompt_2=negative_prompt_2,
|
149 |
+
width=width,
|
150 |
+
height=height,
|
151 |
+
guidance_scale=guidance_scale_base,
|
152 |
+
num_inference_steps=num_inference_steps_base,
|
153 |
+
generator=generator,
|
154 |
+
).images[0]
|
155 |
+
return result
|
156 |
+
|
157 |
+
# Limpeza de memória
|
158 |
+
del pipe
|
159 |
+
torch.cuda.empty_cache()
|
160 |
+
gc.collect()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
|
162 |
with gr.Blocks(theme=gr.themes.Soft(), css="style.css") as demo:
|
163 |
gr.HTML(
|
|
|
166 |
gr.Markdown(DESCRIPTION, elem_id="description")
|
167 |
with gr.Group():
|
168 |
model = gr.Text(label='Model', placeholder='e.g. stabilityai/stable-diffusion-xl-base-1.0')
|
|
|
169 |
lora = gr.Text(label='LoRA 1', placeholder='e.g. nerijs/pixel-art-xl')
|
170 |
lora2 = gr.Text(label='LoRA 2', placeholder='e.g. nerijs/pixel-art-xl')
|
|
|
171 |
lora_scale = gr.Slider(
|
172 |
info="The closer to 1, the more it will resemble LoRA, but errors may be visible.",
|
173 |
label="Lora Scale 1",
|
|
|
185 |
value=0.7,
|
186 |
)
|
187 |
url = gr.Text(label='URL (Img2Img)')
|
|
|
|
|
188 |
with gr.Row():
|
189 |
prompt = gr.Text(
|
190 |
placeholder="Input prompt",
|
|
|
197 |
result = gr.Image(label="Result", show_label=False)
|
198 |
with gr.Accordion("Advanced options", open=False):
|
199 |
with gr.Row():
|
|
|
|
|
200 |
use_img2img = gr.Checkbox(label='Use Img2Img', value=False, visible=ENABLE_USE_IMG2IMG)
|
|
|
201 |
use_lora = gr.Checkbox(label='Use Lora 1', value=False, visible=ENABLE_USE_LORA)
|
202 |
use_lora2 = gr.Checkbox(label='Use Lora 2', value=False, visible=ENABLE_USE_LORA2)
|
203 |
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False)
|
|
|
264 |
step=1,
|
265 |
value=25,
|
266 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
267 |
with gr.Row():
|
268 |
strength_img2img = gr.Slider(
|
269 |
info="Strength for Img2Img",
|
|
|
295 |
queue=False,
|
296 |
api_name=False,
|
297 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
298 |
use_lora.change(
|
299 |
fn=lambda x: gr.update(visible=x),
|
300 |
inputs=use_lora,
|
|
|
316 |
queue=False,
|
317 |
api_name=False,
|
318 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
319 |
|
320 |
gr.on(
|
321 |
triggers=[
|
|
|
345 |
height,
|
346 |
guidance_scale_base,
|
347 |
num_inference_steps_base,
|
|
|
|
|
|
|
348 |
strength_img2img,
|
|
|
349 |
use_lora,
|
350 |
use_lora2,
|
351 |
model,
|
|
|
352 |
lora,
|
353 |
lora2,
|
|
|
354 |
lora_scale,
|
355 |
lora_scale2,
|
356 |
use_img2img,
|
|
|
|
|
357 |
url,
|
|
|
|
|
358 |
],
|
359 |
outputs=result,
|
360 |
api_name="run",
|
361 |
)
|
362 |
|
363 |
if __name__ == "__main__":
|
364 |
+
demo.queue(max_size=4, default_concurrency_limit=4).launch()
|