Spaces:
Running
on
Zero
Running
on
Zero
forplaytvplus
commited on
Commit
•
4dc3375
1
Parent(s):
76340d8
Update app.py
Browse files
app.py
CHANGED
@@ -20,6 +20,7 @@ from io import BytesIO
|
|
20 |
from diffusers.utils import load_image
|
21 |
from diffusers import StableDiffusionXLControlNetPipeline, StableDiffusionXLControlNetInpaintPipeline, ControlNetModel, AutoencoderKL, DiffusionPipeline, AutoPipelineForImage2Image, AutoPipelineForInpainting, UNet2DConditionModel
|
22 |
from controlnet_aux import HEDdetector
|
|
|
23 |
import threading
|
24 |
|
25 |
DESCRIPTION = "# Run any LoRA or SD Model"
|
@@ -27,6 +28,7 @@ if not torch.cuda.is_available():
|
|
27 |
DESCRIPTION += "\n<p>⚠️ This space is running on the CPU. This demo doesn't work on CPU 😞! Run on a GPU by duplicating this space or test our website for free and unlimited by <a href='https://squaadai.com'>clicking here</a>, which provides these and more options.</p>"
|
28 |
|
29 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
30 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1824"))
|
31 |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
|
32 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
|
@@ -50,17 +52,14 @@ pipeline_lock = threading.Lock()
|
|
50 |
def generate(
|
51 |
prompt: str = "",
|
52 |
negative_prompt: str = "",
|
53 |
-
prompt_2: str = "",
|
54 |
-
negative_prompt_2: str = "",
|
55 |
use_negative_prompt: bool = False,
|
56 |
-
use_prompt_2: bool = False,
|
57 |
-
use_negative_prompt_2: bool = False,
|
58 |
seed: int = 0,
|
59 |
width: int = 1024,
|
60 |
height: int = 1024,
|
61 |
guidance_scale_base: float = 5.0,
|
62 |
num_inference_steps_base: int = 25,
|
63 |
strength_img2img: float = 0.7,
|
|
|
64 |
use_lora: bool = False,
|
65 |
use_lora2: bool = False,
|
66 |
model = 'stabilityai/stable-diffusion-xl-base-1.0',
|
@@ -84,7 +83,7 @@ def generate(
|
|
84 |
cached_pipelines[pipeline_key] = AutoPipelineForImage2Image.from_pretrained(model, safety_checker=None, requires_safety_checker=False, torch_dtype=torch.float16, low_cpu_mem_usage=True)
|
85 |
|
86 |
pipe = cached_pipelines[pipeline_key] # Usa o pipeline carregado da memória
|
87 |
-
|
88 |
if use_img2img:
|
89 |
init_image = load_image(url)
|
90 |
|
@@ -115,49 +114,95 @@ def generate(
|
|
115 |
adapter_name2 = cached_loras[lora_key2]
|
116 |
pipe.set_adapters([adapter_name1, adapter_name2], adapter_weights=[lora_scale, lora_scale2])
|
117 |
|
118 |
-
|
119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
if not use_negative_prompt_2:
|
126 |
-
negative_prompt_2 = None # type: ignore
|
127 |
-
|
128 |
-
with pipeline_lock:
|
129 |
-
if use_img2img:
|
130 |
-
result = pipe(
|
131 |
-
prompt=prompt,
|
132 |
-
image=init_image,
|
133 |
-
strength=strength_img2img,
|
134 |
-
negative_prompt=negative_prompt,
|
135 |
-
prompt_2=prompt_2,
|
136 |
-
negative_prompt_2=negative_prompt_2,
|
137 |
-
width=width,
|
138 |
-
height=height,
|
139 |
-
guidance_scale=guidance_scale_base,
|
140 |
-
num_inference_steps=num_inference_steps_base,
|
141 |
-
generator=generator,
|
142 |
-
).images[0]
|
143 |
-
else:
|
144 |
-
result = pipe(
|
145 |
-
prompt=prompt,
|
146 |
-
negative_prompt=negative_prompt,
|
147 |
-
prompt_2=prompt_2,
|
148 |
-
negative_prompt_2=negative_prompt_2,
|
149 |
-
width=width,
|
150 |
-
height=height,
|
151 |
-
guidance_scale=guidance_scale_base,
|
152 |
-
num_inference_steps=num_inference_steps_base,
|
153 |
-
generator=generator,
|
154 |
-
).images[0]
|
155 |
return result
|
156 |
|
157 |
-
#
|
158 |
-
|
159 |
-
|
160 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
|
162 |
with gr.Blocks(theme=gr.themes.Soft(), css="style.css") as demo:
|
163 |
gr.HTML(
|
@@ -198,30 +243,16 @@ with gr.Blocks(theme=gr.themes.Soft(), css="style.css") as demo:
|
|
198 |
with gr.Accordion("Advanced options", open=False):
|
199 |
with gr.Row():
|
200 |
use_img2img = gr.Checkbox(label='Use Img2Img', value=False, visible=ENABLE_USE_IMG2IMG)
|
|
|
201 |
use_lora = gr.Checkbox(label='Use Lora 1', value=False, visible=ENABLE_USE_LORA)
|
202 |
use_lora2 = gr.Checkbox(label='Use Lora 2', value=False, visible=ENABLE_USE_LORA2)
|
203 |
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False)
|
204 |
-
use_prompt_2 = gr.Checkbox(label="Use prompt 2", value=False)
|
205 |
-
use_negative_prompt_2 = gr.Checkbox(label="Use negative prompt 2", value=False)
|
206 |
negative_prompt = gr.Text(
|
207 |
placeholder="Input Negative Prompt",
|
208 |
label="Negative prompt",
|
209 |
max_lines=1,
|
210 |
visible=False,
|
211 |
)
|
212 |
-
prompt_2 = gr.Text(
|
213 |
-
placeholder="Input Prompt 2",
|
214 |
-
label="Prompt 2",
|
215 |
-
max_lines=1,
|
216 |
-
visible=False,
|
217 |
-
)
|
218 |
-
negative_prompt_2 = gr.Text(
|
219 |
-
placeholder="Input Negative Prompt 2",
|
220 |
-
label="Negative prompt 2",
|
221 |
-
max_lines=1,
|
222 |
-
visible=False,
|
223 |
-
)
|
224 |
-
|
225 |
seed = gr.Slider(
|
226 |
label="Seed",
|
227 |
minimum=0,
|
@@ -281,20 +312,6 @@ with gr.Blocks(theme=gr.themes.Soft(), css="style.css") as demo:
|
|
281 |
queue=False,
|
282 |
api_name=False,
|
283 |
)
|
284 |
-
use_prompt_2.change(
|
285 |
-
fn=lambda x: gr.update(visible=x),
|
286 |
-
inputs=use_prompt_2,
|
287 |
-
outputs=prompt_2,
|
288 |
-
queue=False,
|
289 |
-
api_name=False,
|
290 |
-
)
|
291 |
-
use_negative_prompt_2.change(
|
292 |
-
fn=lambda x: gr.update(visible=x),
|
293 |
-
inputs=use_negative_prompt_2,
|
294 |
-
outputs=negative_prompt_2,
|
295 |
-
queue=False,
|
296 |
-
api_name=False,
|
297 |
-
)
|
298 |
use_lora.change(
|
299 |
fn=lambda x: gr.update(visible=x),
|
300 |
inputs=use_lora,
|
@@ -309,6 +326,13 @@ with gr.Blocks(theme=gr.themes.Soft(), css="style.css") as demo:
|
|
309 |
queue=False,
|
310 |
api_name=False,
|
311 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
312 |
use_img2img.change(
|
313 |
fn=lambda x: gr.update(visible=x),
|
314 |
inputs=use_img2img,
|
@@ -321,8 +345,6 @@ with gr.Blocks(theme=gr.themes.Soft(), css="style.css") as demo:
|
|
321 |
triggers=[
|
322 |
prompt.submit,
|
323 |
negative_prompt.submit,
|
324 |
-
prompt_2.submit,
|
325 |
-
negative_prompt_2.submit,
|
326 |
run_button.click,
|
327 |
],
|
328 |
fn=randomize_seed_fn,
|
@@ -335,17 +357,14 @@ with gr.Blocks(theme=gr.themes.Soft(), css="style.css") as demo:
|
|
335 |
inputs=[
|
336 |
prompt,
|
337 |
negative_prompt,
|
338 |
-
prompt_2,
|
339 |
-
negative_prompt_2,
|
340 |
use_negative_prompt,
|
341 |
-
use_prompt_2,
|
342 |
-
use_negative_prompt_2,
|
343 |
seed,
|
344 |
width,
|
345 |
height,
|
346 |
guidance_scale_base,
|
347 |
num_inference_steps_base,
|
348 |
strength_img2img,
|
|
|
349 |
use_lora,
|
350 |
use_lora2,
|
351 |
model,
|
|
|
20 |
from diffusers.utils import load_image
|
21 |
from diffusers import StableDiffusionXLControlNetPipeline, StableDiffusionXLControlNetInpaintPipeline, ControlNetModel, AutoencoderKL, DiffusionPipeline, AutoPipelineForImage2Image, AutoPipelineForInpainting, UNet2DConditionModel
|
22 |
from controlnet_aux import HEDdetector
|
23 |
+
from compel import Compel, ReturnedEmbeddingsType
|
24 |
import threading
|
25 |
|
26 |
DESCRIPTION = "# Run any LoRA or SD Model"
|
|
|
28 |
DESCRIPTION += "\n<p>⚠️ This space is running on the CPU. This demo doesn't work on CPU 😞! Run on a GPU by duplicating this space or test our website for free and unlimited by <a href='https://squaadai.com'>clicking here</a>, which provides these and more options.</p>"
|
29 |
|
30 |
MAX_SEED = np.iinfo(np.int32).max
|
31 |
+
CUDA_LAUNCH_BLOCKING=1
|
32 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1824"))
|
33 |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
|
34 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
|
|
|
52 |
def generate(
|
53 |
prompt: str = "",
|
54 |
negative_prompt: str = "",
|
|
|
|
|
55 |
use_negative_prompt: bool = False,
|
|
|
|
|
56 |
seed: int = 0,
|
57 |
width: int = 1024,
|
58 |
height: int = 1024,
|
59 |
guidance_scale_base: float = 5.0,
|
60 |
num_inference_steps_base: int = 25,
|
61 |
strength_img2img: float = 0.7,
|
62 |
+
is_sdxl: bool = False,
|
63 |
use_lora: bool = False,
|
64 |
use_lora2: bool = False,
|
65 |
model = 'stabilityai/stable-diffusion-xl-base-1.0',
|
|
|
83 |
cached_pipelines[pipeline_key] = AutoPipelineForImage2Image.from_pretrained(model, safety_checker=None, requires_safety_checker=False, torch_dtype=torch.float16, low_cpu_mem_usage=True)
|
84 |
|
85 |
pipe = cached_pipelines[pipeline_key] # Usa o pipeline carregado da memória
|
86 |
+
|
87 |
if use_img2img:
|
88 |
init_image = load_image(url)
|
89 |
|
|
|
114 |
adapter_name2 = cached_loras[lora_key2]
|
115 |
pipe.set_adapters([adapter_name1, adapter_name2], adapter_weights=[lora_scale, lora_scale2])
|
116 |
|
117 |
+
# É SDXL 1.0 (NÃO SD 1.5)
|
118 |
+
if is_sdxl:
|
119 |
+
pipe.enable_model_cpu_offload()
|
120 |
+
compel = Compel(
|
121 |
+
tokenizer=[pipe.tokenizer, pipe.tokenizer_2],
|
122 |
+
text_encoder=[pipe.text_encoder, pipe.text_encoder_2],
|
123 |
+
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
|
124 |
+
requires_pooled=[False, True],
|
125 |
+
truncate_long_prompts=False
|
126 |
+
)
|
127 |
+
conditioning, pooled = compel(prompt)
|
128 |
+
generator = torch.Generator().manual_seed(seed)
|
129 |
+
|
130 |
+
if not use_negative_prompt:
|
131 |
+
negative_prompt = None # type: ignore
|
132 |
+
|
133 |
+
with pipeline_lock:
|
134 |
+
if use_img2img:
|
135 |
+
result = pipe(
|
136 |
+
prompt_embeds=conditioning,
|
137 |
+
pooled_prompt_embeds=pooled,
|
138 |
+
image=init_image,
|
139 |
+
strength=strength_img2img,
|
140 |
+
negative_prompt=negative_prompt,
|
141 |
+
width=width,
|
142 |
+
height=height,
|
143 |
+
guidance_scale=guidance_scale_base,
|
144 |
+
num_inference_steps=num_inference_steps_base,
|
145 |
+
generator=generator,
|
146 |
+
).images[0]
|
147 |
+
else:
|
148 |
+
result = pipe(
|
149 |
+
prompt_embeds=conditioning,
|
150 |
+
pooled_prompt_embeds=pooled,
|
151 |
+
negative_prompt=negative_prompt,
|
152 |
+
width=width,
|
153 |
+
height=height,
|
154 |
+
guidance_scale=guidance_scale_base,
|
155 |
+
num_inference_steps=num_inference_steps_base,
|
156 |
+
generator=generator,
|
157 |
+
).images[0]
|
158 |
|
159 |
+
# Limpeza de memória
|
160 |
+
del pipe, conditioning, pooled
|
161 |
+
torch.cuda.empty_cache()
|
162 |
+
gc.collect()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
return result
|
164 |
|
165 |
+
# NÃO É SDXL (E SIM SD 1.5)
|
166 |
+
if not is_sdxl:
|
167 |
+
pipe.enable_model_cpu_offload()
|
168 |
+
compel = Compel(tokenizer=pipe.tokenizer, text_encoder=pipe.text_encoder, truncate_long_prompts=False)
|
169 |
+
conditioning = compel.build_conditioning_tensor(prompt)
|
170 |
+
negative_conditioning = compel.build_conditioning_tensor(negative_prompt)
|
171 |
+
[conditioning, negative_conditioning] = compel.pad_conditioning_tensors_to_same_length([conditioning, negative_conditioning])
|
172 |
+
generator = torch.Generator().manual_seed(seed)
|
173 |
+
|
174 |
+
if not use_negative_prompt:
|
175 |
+
negative_prompt = None # type: ignore
|
176 |
+
|
177 |
+
with pipeline_lock:
|
178 |
+
if use_img2img:
|
179 |
+
result = pipe(
|
180 |
+
prompt_embeds=conditioning,
|
181 |
+
image=init_image,
|
182 |
+
strength=strength_img2img,
|
183 |
+
negative_prompt_embeds=negative_conditioning,
|
184 |
+
width=width,
|
185 |
+
height=height,
|
186 |
+
guidance_scale=guidance_scale_base,
|
187 |
+
num_inference_steps=num_inference_steps_base,
|
188 |
+
generator=generator,
|
189 |
+
).images[0]
|
190 |
+
else:
|
191 |
+
result = pipe(
|
192 |
+
prompt_embeds=conditioning,
|
193 |
+
negative_prompt_embeds=negative_conditioning,
|
194 |
+
width=width,
|
195 |
+
height=height,
|
196 |
+
guidance_scale=guidance_scale_base,
|
197 |
+
num_inference_steps=num_inference_steps_base,
|
198 |
+
generator=generator,
|
199 |
+
).images[0]
|
200 |
+
|
201 |
+
# Limpeza de memória
|
202 |
+
del pipe, conditioning, negative_conditioning
|
203 |
+
torch.cuda.empty_cache()
|
204 |
+
gc.collect()
|
205 |
+
return result
|
206 |
|
207 |
with gr.Blocks(theme=gr.themes.Soft(), css="style.css") as demo:
|
208 |
gr.HTML(
|
|
|
243 |
with gr.Accordion("Advanced options", open=False):
|
244 |
with gr.Row():
|
245 |
use_img2img = gr.Checkbox(label='Use Img2Img', value=False, visible=ENABLE_USE_IMG2IMG)
|
246 |
+
is_sdxl = gr.Checkbox(label='Is SDXL?', value=False)
|
247 |
use_lora = gr.Checkbox(label='Use Lora 1', value=False, visible=ENABLE_USE_LORA)
|
248 |
use_lora2 = gr.Checkbox(label='Use Lora 2', value=False, visible=ENABLE_USE_LORA2)
|
249 |
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False)
|
|
|
|
|
250 |
negative_prompt = gr.Text(
|
251 |
placeholder="Input Negative Prompt",
|
252 |
label="Negative prompt",
|
253 |
max_lines=1,
|
254 |
visible=False,
|
255 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
256 |
seed = gr.Slider(
|
257 |
label="Seed",
|
258 |
minimum=0,
|
|
|
312 |
queue=False,
|
313 |
api_name=False,
|
314 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
315 |
use_lora.change(
|
316 |
fn=lambda x: gr.update(visible=x),
|
317 |
inputs=use_lora,
|
|
|
326 |
queue=False,
|
327 |
api_name=False,
|
328 |
)
|
329 |
+
is_sdxl.change(
|
330 |
+
fn=lambda x: gr.update(visible=x),
|
331 |
+
inputs=is_sdxl,
|
332 |
+
outputs=is_sdxl,
|
333 |
+
queue=False,
|
334 |
+
api_name=False,
|
335 |
+
)
|
336 |
use_img2img.change(
|
337 |
fn=lambda x: gr.update(visible=x),
|
338 |
inputs=use_img2img,
|
|
|
345 |
triggers=[
|
346 |
prompt.submit,
|
347 |
negative_prompt.submit,
|
|
|
|
|
348 |
run_button.click,
|
349 |
],
|
350 |
fn=randomize_seed_fn,
|
|
|
357 |
inputs=[
|
358 |
prompt,
|
359 |
negative_prompt,
|
|
|
|
|
360 |
use_negative_prompt,
|
|
|
|
|
361 |
seed,
|
362 |
width,
|
363 |
height,
|
364 |
guidance_scale_base,
|
365 |
num_inference_steps_base,
|
366 |
strength_img2img,
|
367 |
+
is_sdxl,
|
368 |
use_lora,
|
369 |
use_lora2,
|
370 |
model,
|