Spaces:
Runtime error
Runtime error
from pathlib import Path | |
from typing import Dict, List | |
import torchvision | |
import torch | |
import tops | |
import torchvision.transforms.functional as F | |
from .functional import hflip | |
import numpy as np | |
from dp2.utils.vis_utils import get_coco_keypoints | |
from PIL import Image, ImageDraw | |
from typing import Tuple | |
class RandomHorizontalFlip(torch.nn.Module): | |
def __init__(self, p: float, flip_map=None, **kwargs): | |
super().__init__() | |
self.flip_ratio = p | |
self.flip_map = flip_map | |
if self.flip_ratio is None: | |
self.flip_ratio = 0.5 | |
assert 0 <= self.flip_ratio <= 1 | |
def forward(self, container: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: | |
if torch.rand(1) > self.flip_ratio: | |
return container | |
return hflip(container, self.flip_map) | |
class CenterCrop(torch.nn.Module): | |
""" | |
Performs the transform on the image. | |
NOTE: Does not transform the mask to improve runtime. | |
""" | |
def __init__(self, size: List[int]): | |
super().__init__() | |
self.size = tuple(size) | |
def forward(self, container: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: | |
min_size = min(container["img"].shape[1], container["img"].shape[2]) | |
if min_size < self.size[0]: | |
container["img"] = F.center_crop(container["img"], min_size) | |
container["img"] = F.resize(container["img"], self.size) | |
return container | |
container["img"] = F.center_crop(container["img"], self.size) | |
return container | |
class Resize(torch.nn.Module): | |
""" | |
Performs the transform on the image. | |
NOTE: Does not transform the mask to improve runtime. | |
""" | |
def __init__(self, size, interpolation=F.InterpolationMode.BILINEAR): | |
super().__init__() | |
self.size = tuple(size) | |
self.interpolation = interpolation | |
def forward(self, container: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: | |
container["img"] = F.resize(container["img"], self.size, self.interpolation, antialias=True) | |
if "semantic_mask" in container: | |
container["semantic_mask"] = F.resize( | |
container["semantic_mask"], self.size, F.InterpolationMode.NEAREST) | |
if "embedding" in container: | |
container["embedding"] = F.resize( | |
container["embedding"], self.size, self.interpolation) | |
if "mask" in container: | |
container["mask"] = F.resize( | |
container["mask"], self.size, F.InterpolationMode.NEAREST) | |
if "E_mask" in container: | |
container["E_mask"] = F.resize( | |
container["E_mask"], self.size, F.InterpolationMode.NEAREST) | |
if "maskrcnn_mask" in container: | |
container["maskrcnn_mask"] = F.resize( | |
container["maskrcnn_mask"], self.size, F.InterpolationMode.NEAREST) | |
if "vertices" in container: | |
container["vertices"] = F.resize( | |
container["vertices"], self.size, F.InterpolationMode.NEAREST) | |
return container | |
def __repr__(self): | |
repr = super().__repr__() | |
vars_ = dict(size=self.size, interpolation=self.interpolation) | |
return repr + " " + " ".join([f"{k}: {v}" for k, v in vars_.items()]) | |
class Normalize(torch.nn.Module): | |
""" | |
Performs the transform on the image. | |
NOTE: Does not transform the mask to improve runtime. | |
""" | |
def __init__(self, mean, std, inplace, keys=["img"]): | |
super().__init__() | |
self.mean = mean | |
self.std = std | |
self.inplace = inplace | |
self.keys = keys | |
def forward(self, container: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: | |
for key in self.keys: | |
container[key] = F.normalize(container[key], self.mean, self.std, self.inplace) | |
return container | |
def __repr__(self): | |
repr = super().__repr__() | |
vars_ = dict(mean=self.mean, std=self.std, inplace=self.inplace) | |
return repr + " " + " ".join([f"{k}: {v}" for k, v in vars_.items()]) | |
class ToFloat(torch.nn.Module): | |
def __init__(self, keys=["img"], norm=True) -> None: | |
super().__init__() | |
self.keys = keys | |
self.gain = 255 if norm else 1 | |
def forward(self, container: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: | |
for key in self.keys: | |
container[key] = container[key].float() / self.gain | |
return container | |
class RandomCrop(torchvision.transforms.RandomCrop): | |
""" | |
Performs the transform on the image. | |
NOTE: Does not transform the mask to improve runtime. | |
""" | |
def forward(self, container: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: | |
container["img"] = super().forward(container["img"]) | |
return container | |
class CreateCondition(torch.nn.Module): | |
def forward(self, container: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: | |
if container["img"].dtype == torch.uint8: | |
container["condition"] = container["img"] * container["mask"].byte() + (1-container["mask"].byte()) * 127 | |
return container | |
container["condition"] = container["img"] * container["mask"] | |
return container | |
class CreateEmbedding(torch.nn.Module): | |
def __init__(self, embed_path: Path, cuda=True) -> None: | |
super().__init__() | |
self.embed_map = torch.load(embed_path, map_location=torch.device("cpu")) | |
if cuda: | |
self.embed_map = tops.to_cuda(self.embed_map) | |
def forward(self, container: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: | |
vertices = container["vertices"] | |
if vertices.ndim == 3: | |
embedding = self.embed_map[vertices.long()].squeeze(dim=0) | |
embedding = embedding.permute(2, 0, 1) * container["E_mask"] | |
pass | |
else: | |
assert vertices.ndim == 4 | |
embedding = self.embed_map[vertices.long()].squeeze(dim=1) | |
embedding = embedding.permute(0, 3, 1, 2) * container["E_mask"] | |
container["embedding"] = embedding | |
container["embed_map"] = self.embed_map.clone() | |
return container | |
class InsertJointMap(torch.nn.Module): | |
def __init__(self, imsize: Tuple) -> None: | |
super().__init__() | |
self.imsize = imsize | |
knames = get_coco_keypoints()[0] | |
knames = knames + ["neck", "mid_hip"] | |
connectivity = { | |
"nose": ["left_eye", "right_eye", "neck"], | |
"left_eye": ["right_eye", "left_ear"], | |
"right_eye": ["right_ear"], | |
"left_shoulder": ["right_shoulder", "left_elbow", "left_hip"], | |
"right_shoulder": ["right_elbow", "right_hip"], | |
"left_elbow": ["left_wrist"], | |
"right_elbow": ["right_wrist"], | |
"left_hip": ["right_hip", "left_knee"], | |
"right_hip": ["right_knee"], | |
"left_knee": ["left_ankle"], | |
"right_knee": ["right_ankle"], | |
"neck": ["mid_hip", "nose"], | |
} | |
category = { | |
("nose", "left_eye"): 0, # head | |
("nose", "right_eye"): 0, # head | |
("nose", "neck"): 0, # head | |
("left_eye", "right_eye"): 0, # head | |
("left_eye", "left_ear"): 0, # head | |
("right_eye", "right_ear"): 0, # head | |
("left_shoulder", "left_elbow"): 1, # left arm | |
("left_elbow", "left_wrist"): 1, # left arm | |
("right_shoulder", "right_elbow"): 2, # right arm | |
("right_elbow", "right_wrist"): 2, # right arm | |
("left_shoulder", "right_shoulder"): 3, # body | |
("left_shoulder", "left_hip"): 3, # body | |
("right_shoulder", "right_hip"): 3, # body | |
("left_hip", "right_hip"): 3, # body | |
("left_hip", "left_knee"): 4, # left leg | |
("left_knee", "left_ankle"): 4, # left leg | |
("right_hip", "right_knee"): 5, # right leg | |
("right_knee", "right_ankle"): 5, # right leg | |
("neck", "mid_hip"): 3, # body | |
("neck", "nose"): 0, # head | |
} | |
self.indices2category = { | |
tuple([knames.index(n) for n in k]): v for k, v in category.items() | |
} | |
self.connectivity_indices = { | |
knames.index(k): [knames.index(v_) for v_ in v] | |
for k, v in connectivity.items() | |
} | |
self.l_shoulder = knames.index("left_shoulder") | |
self.r_shoulder = knames.index("right_shoulder") | |
self.l_hip = knames.index("left_hip") | |
self.r_hip = knames.index("right_hip") | |
self.l_eye = knames.index("left_eye") | |
self.r_eye = knames.index("right_eye") | |
self.nose = knames.index("nose") | |
self.neck = knames.index("neck") | |
def create_joint_map(self, N, H, W, keypoints): | |
joint_maps = np.zeros((N, H, W), dtype=np.uint8) | |
for bidx, keypoints in enumerate(keypoints): | |
assert keypoints.shape == (17, 3), keypoints.shape | |
keypoints = torch.cat((keypoints, torch.zeros(2, 3))) | |
visible = keypoints[:, -1] > 0 | |
if visible[self.l_shoulder] and visible[self.r_shoulder]: | |
neck = (keypoints[self.l_shoulder] | |
+ (keypoints[self.r_shoulder] - keypoints[self.l_shoulder]) / 2) | |
keypoints[-2] = neck | |
visible[-2] = 1 | |
if visible[self.l_hip] and visible[self.r_hip]: | |
mhip = (keypoints[self.l_hip] | |
+ (keypoints[self.r_hip] - keypoints[self.l_hip]) / 2 | |
) | |
keypoints[-1] = mhip | |
visible[-1] = 1 | |
keypoints[:, 0] *= W | |
keypoints[:, 1] *= H | |
joint_map = Image.fromarray(np.zeros((H, W), dtype=np.uint8)) | |
draw = ImageDraw.Draw(joint_map) | |
for fidx in self.connectivity_indices.keys(): | |
for tidx in self.connectivity_indices[fidx]: | |
if visible[fidx] == 0 or visible[tidx] == 0: | |
continue | |
c = self.indices2category[(fidx, tidx)] | |
s = tuple(keypoints[fidx, :2].round().long().numpy().tolist()) | |
e = tuple(keypoints[tidx, :2].round().long().numpy().tolist()) | |
draw.line((s, e), width=1, fill=c + 1) | |
if visible[self.nose] == 0 and visible[self.neck] == 1: | |
m_eye = ( | |
keypoints[self.l_eye] | |
+ (keypoints[self.r_eye] - keypoints[self.l_eye]) / 2 | |
) | |
s = tuple(m_eye[:2].round().long().numpy().tolist()) | |
e = tuple(keypoints[self.neck, :2].round().long().numpy().tolist()) | |
c = self.indices2category[(self.nose, self.neck)] | |
draw.line((s, e), width=1, fill=c + 1) | |
joint_map = np.array(joint_map) | |
joint_maps[bidx] = np.array(joint_map) | |
return joint_maps[:, None] | |
def forward(self, batch): | |
batch["joint_map"] = torch.from_numpy(self.create_joint_map( | |
batch["img"].shape[0], *self.imsize, batch["keypoints"])) | |
return batch | |