Spaces:
Sleeping
Sleeping
REmove columns we don't want
Browse files- app.py +2 -15
- src/display/utils.py +0 -6
- src/leaderboard/read_evals.py +1 -8
app.py
CHANGED
@@ -68,22 +68,9 @@ def init_leaderboard(dataframe):
|
|
68 |
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
|
69 |
label="Select Columns to Display:",
|
70 |
),
|
71 |
-
search_columns=[AutoEvalColumn.model.name
|
72 |
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
|
73 |
-
filter_columns=[
|
74 |
-
ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
|
75 |
-
ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
|
76 |
-
ColumnFilter(
|
77 |
-
AutoEvalColumn.params.name,
|
78 |
-
type="slider",
|
79 |
-
min=0.01,
|
80 |
-
max=150,
|
81 |
-
label="Select the number of parameters (B)",
|
82 |
-
),
|
83 |
-
ColumnFilter(
|
84 |
-
AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
|
85 |
-
),
|
86 |
-
],
|
87 |
bool_checkboxgroup_label="Hide models",
|
88 |
interactive=False,
|
89 |
)
|
|
|
68 |
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
|
69 |
label="Select Columns to Display:",
|
70 |
),
|
71 |
+
search_columns=[AutoEvalColumn.model.name],
|
72 |
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
|
73 |
+
filter_columns=[],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
bool_checkboxgroup_label="Hide models",
|
75 |
interactive=False,
|
76 |
)
|
src/display/utils.py
CHANGED
@@ -32,12 +32,6 @@ for task in Tasks:
|
|
32 |
# Model information
|
33 |
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
|
34 |
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
|
35 |
-
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
|
36 |
-
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
|
37 |
-
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
|
38 |
-
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
|
39 |
-
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
|
40 |
-
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
|
41 |
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
|
42 |
|
43 |
# We use make dataclass to dynamically fill the scores from Tasks
|
|
|
32 |
# Model information
|
33 |
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
|
34 |
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
|
36 |
|
37 |
# We use make dataclass to dynamically fill the scores from Tasks
|
src/leaderboard/read_evals.py
CHANGED
@@ -112,18 +112,10 @@ class EvalResult:
|
|
112 |
average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
|
113 |
data_dict = {
|
114 |
"eval_name": self.eval_name, # not a column, just a save name,
|
115 |
-
AutoEvalColumn.precision.name: self.precision.value.name,
|
116 |
-
AutoEvalColumn.model_type.name: self.model_type.value.name,
|
117 |
-
AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
|
118 |
-
AutoEvalColumn.weight_type.name: self.weight_type.value.name,
|
119 |
AutoEvalColumn.architecture.name: self.architecture,
|
120 |
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
121 |
AutoEvalColumn.revision.name: self.revision,
|
122 |
AutoEvalColumn.average.name: average,
|
123 |
-
AutoEvalColumn.license.name: self.license,
|
124 |
-
AutoEvalColumn.likes.name: self.likes,
|
125 |
-
AutoEvalColumn.params.name: self.num_params,
|
126 |
-
AutoEvalColumn.still_on_hub.name: self.still_on_hub,
|
127 |
}
|
128 |
|
129 |
for task in Tasks:
|
@@ -177,6 +169,7 @@ def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResu
|
|
177 |
# Creation of result
|
178 |
eval_result = EvalResult.init_from_json_file(model_result_filepath)
|
179 |
# eval_result.update_with_request_file(requests_path)
|
|
|
180 |
|
181 |
# Store results of same eval together
|
182 |
eval_name = eval_result.eval_name
|
|
|
112 |
average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
|
113 |
data_dict = {
|
114 |
"eval_name": self.eval_name, # not a column, just a save name,
|
|
|
|
|
|
|
|
|
115 |
AutoEvalColumn.architecture.name: self.architecture,
|
116 |
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
117 |
AutoEvalColumn.revision.name: self.revision,
|
118 |
AutoEvalColumn.average.name: average,
|
|
|
|
|
|
|
|
|
119 |
}
|
120 |
|
121 |
for task in Tasks:
|
|
|
169 |
# Creation of result
|
170 |
eval_result = EvalResult.init_from_json_file(model_result_filepath)
|
171 |
# eval_result.update_with_request_file(requests_path)
|
172 |
+
print(eval_result)
|
173 |
|
174 |
# Store results of same eval together
|
175 |
eval_name = eval_result.eval_name
|