Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2 as cv
|
2 |
+
import numpy as np
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
# Filtreler
|
6 |
+
def retro_filter(frame):
|
7 |
+
sepia= cv.transform(frame, np.array([[0.393, 0.769, 0.189],
|
8 |
+
[0.349, 0.686, 0.168],
|
9 |
+
[0.272, 0.534, 0.131]]))
|
10 |
+
normalization= np.clip(sepia, 0, 255).astype(np.uint8) #normalizasyon
|
11 |
+
return normalization
|
12 |
+
|
13 |
+
def apply_gaussian_blur(frame):
|
14 |
+
return cv.GaussianBlur(frame, (15, 15), 0)
|
15 |
+
|
16 |
+
def apply_sharpening_filter(frame):
|
17 |
+
kernel = np.array([[0, -1, 0], [-1, 5,-1], [0, -1, 0]])
|
18 |
+
return cv.filter2D(frame, -1, kernel)
|
19 |
+
|
20 |
+
def apply_edge_detection(frame):
|
21 |
+
return cv.Canny(frame, 100, 200)
|
22 |
+
|
23 |
+
def apply_invert_filter(frame):
|
24 |
+
return cv.bitwise_not(frame)
|
25 |
+
|
26 |
+
def adjust_brightness_contrast(frame, alpha=1.0, beta=50):
|
27 |
+
return cv.convertScaleAbs(frame, alpha=alpha, beta=beta)
|
28 |
+
|
29 |
+
def apply_grayscale_filter(frame):
|
30 |
+
return cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
|
31 |
+
|
32 |
+
# Filtre uygulama fonksiyonu
|
33 |
+
def apply_filter(filter_type, input_image=None):
|
34 |
+
if input_image is not None:
|
35 |
+
frame = input_image
|
36 |
+
else:
|
37 |
+
cap = cv.VideoCapture(0)
|
38 |
+
ret, frame = cap.read()
|
39 |
+
cap.release()
|
40 |
+
if not ret:
|
41 |
+
return "Kameradan görüntü alınamadı. Lütfen tekrar deneyin."
|
42 |
+
|
43 |
+
if filter_type == "Gaussian Blur":
|
44 |
+
return apply_gaussian_blur(frame)
|
45 |
+
elif filter_type == "Sharpen":
|
46 |
+
return apply_sharpening_filter(frame)
|
47 |
+
elif filter_type == "Edge Detection":
|
48 |
+
return apply_edge_detection(frame)
|
49 |
+
elif filter_type == "Invert":
|
50 |
+
return apply_invert_filter(frame)
|
51 |
+
elif filter_type == "Brightness":
|
52 |
+
return adjust_brightness_contrast(frame, alpha=1.0, beta=50)
|
53 |
+
elif filter_type == "Grayscale":
|
54 |
+
return apply_grayscale_filter(frame)
|
55 |
+
elif filter_type == "Retro":
|
56 |
+
return retro_filter(frame)
|
57 |
+
|
58 |
+
|
59 |
+
# Gradio arayüzü
|
60 |
+
with gr.Blocks() as demo:
|
61 |
+
gr.Markdown("# Web Kameradan Canlı Filtreleme")
|
62 |
+
|
63 |
+
# Filtre seçenekleri
|
64 |
+
filter_type = gr.Dropdown(
|
65 |
+
label="Filtre Seçin",
|
66 |
+
choices=["Retro","Gaussian Blur", "Sharpen", "Edge Detection", "Invert", "Brightness", "Grayscale"],
|
67 |
+
value="Retro"
|
68 |
+
)
|
69 |
+
interactive=True
|
70 |
+
# Görüntü yükleme alanı
|
71 |
+
input_image = gr.Image(label="Resim Yükle", type="numpy")
|
72 |
+
|
73 |
+
# Çıktı için görüntü
|
74 |
+
output_image = gr.Image(label="Filtre Uygulandı")
|
75 |
+
|
76 |
+
# Filtre uygula butonu
|
77 |
+
apply_button = gr.Button("Filtre Uygula")
|
78 |
+
|
79 |
+
# Butona tıklanınca filtre uygulama fonksiyonu
|
80 |
+
apply_button.click(fn=apply_filter, inputs=[filter_type, input_image], outputs=output_image)
|
81 |
+
|
82 |
+
# Gradio arayüzünü başlat
|
83 |
+
demo.launch()
|