Spaces:
Running
Running
henok3878
commited on
Commit
·
a55bf24
1
Parent(s):
70e1f1d
refactor: update inference to use priming by default
Browse files
main.py
CHANGED
|
@@ -8,7 +8,7 @@ from pathlib import Path
|
|
| 8 |
import logging
|
| 9 |
import time
|
| 10 |
from contextlib import asynccontextmanager
|
| 11 |
-
from inference_utils import construct_alphabet_list, convert_offsets_to_absolute_coords, encode_text, get_alphabet_map
|
| 12 |
|
| 13 |
logging.basicConfig(level=logging.INFO)
|
| 14 |
logger = logging.getLogger(__name__)
|
|
@@ -18,13 +18,13 @@ QUANTIZED_MODEL_NAME = "model.scripted.quantized.pt"
|
|
| 18 |
SCRIPTED_MODEL_NAME = "model.scripted.pt"
|
| 19 |
METADATA_MODEL_NAME = "model.pt"
|
| 20 |
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
ALPHABET_LIST: Optional[list[str]] = None
|
| 26 |
ALPHABET_SIZE: Optional[int] = None
|
| 27 |
-
|
| 28 |
output_mixture_components: Optional[int] = None # To store num_mixtures for GMM sampling
|
| 29 |
lstm_size: Optional[int] = None
|
| 30 |
attention_mixture_components: Optional[int] = None
|
|
@@ -55,15 +55,15 @@ class HealthResponse(BaseModel):
|
|
| 55 |
@asynccontextmanager
|
| 56 |
async def lifespan(app: FastAPI):
|
| 57 |
"""Lifespan context manager for startup and shutdown events"""
|
| 58 |
-
global
|
| 59 |
logger.info("Attempting to load model resources during startup")
|
| 60 |
try:
|
| 61 |
-
|
| 62 |
-
logger.info(f"Using device: {
|
| 63 |
|
| 64 |
scripted_model_path = MODEL_DIR / SCRIPTED_MODEL_NAME
|
| 65 |
metadata_model_path = MODEL_DIR / METADATA_MODEL_NAME
|
| 66 |
-
if
|
| 67 |
scripted_model_path = MODEL_DIR / QUANTIZED_MODEL_NAME
|
| 68 |
|
| 69 |
if not scripted_model_path.exists():
|
|
@@ -74,18 +74,18 @@ async def lifespan(app: FastAPI):
|
|
| 74 |
raise FileNotFoundError(f"Metadata model file not found at {metadata_model_path}")
|
| 75 |
|
| 76 |
# Load the traced model
|
| 77 |
-
|
| 78 |
-
if
|
| 79 |
-
|
| 80 |
logger.info(f"Traced model loaded successfully from {scripted_model_path}")
|
| 81 |
|
| 82 |
# Load the metadata
|
| 83 |
-
|
| 84 |
-
if
|
| 85 |
logger.info(f"Model metadata loaded successfully from {metadata_model_path}")
|
| 86 |
-
logger.info(f"Model metadata keys: {list(
|
| 87 |
|
| 88 |
-
config_full =
|
| 89 |
if not config_full or not isinstance(config_full, dict):
|
| 90 |
raise ValueError(f"Key `config_full` not found or not a dict")
|
| 91 |
|
|
@@ -95,7 +95,7 @@ async def lifespan(app: FastAPI):
|
|
| 95 |
if not dataset_config or not isinstance(dataset_config, dict):
|
| 96 |
raise ValueError(f"Key `dataset` not found or not a dict in config_full")
|
| 97 |
alphabet_str = dataset_config['alphabet_string']
|
| 98 |
-
|
| 99 |
output_mixture_components = model_params['output_mixture_components']
|
| 100 |
|
| 101 |
lstm_size = model_params['lstm_size']
|
|
@@ -103,7 +103,7 @@ async def lifespan(app: FastAPI):
|
|
| 103 |
|
| 104 |
ALPHABET_LIST = construct_alphabet_list(alphabet_str)
|
| 105 |
ALPHABET_SIZE = len(ALPHABET_LIST)
|
| 106 |
-
|
| 107 |
|
| 108 |
logger.info(f"Alphabet created. Size: {len(ALPHABET_LIST)}")
|
| 109 |
logger.info("Model resources are loaded and ready")
|
|
@@ -112,16 +112,16 @@ async def lifespan(app: FastAPI):
|
|
| 112 |
|
| 113 |
except Exception as e:
|
| 114 |
logger.error(f"Error loading model resources: {e}", exc_info=True)
|
| 115 |
-
|
| 116 |
-
|
| 117 |
raise
|
| 118 |
|
| 119 |
yield
|
| 120 |
|
| 121 |
# Cleanup on shutdown
|
| 122 |
logger.info("Shutting down API and cleaning up resources")
|
| 123 |
-
|
| 124 |
-
|
| 125 |
|
| 126 |
app = FastAPI(
|
| 127 |
title="Scriptify API",
|
|
@@ -145,32 +145,31 @@ async def read_root():
|
|
| 145 |
|
| 146 |
@app.get("/health", response_model=HealthResponse, tags=["General"])
|
| 147 |
async def health_check():
|
| 148 |
-
global
|
| 149 |
|
| 150 |
-
is_healthy = all([
|
| 151 |
|
| 152 |
return HealthResponse(
|
| 153 |
status="healthy" if is_healthy else "unhealthy",
|
| 154 |
-
model_loaded=bool(
|
| 155 |
-
device=str(
|
| 156 |
-
model_metadata_keys=list(
|
| 157 |
)
|
| 158 |
|
| 159 |
-
def text_to_tensor(text: str,
|
| 160 |
"""Convert text to tensor format expected by the model"""
|
| 161 |
-
|
| 162 |
-
if alphabet_map is None:
|
| 163 |
raise ValueError("Alphabet map not initialized during api startup")
|
| 164 |
-
|
| 165 |
-
raise ValueError("`max_text_len` is not initialized during api startup")
|
| 166 |
padded_encoded_np, true_length = encode_text(
|
| 167 |
text=text,
|
| 168 |
-
char_to_index_map=
|
| 169 |
-
max_length=
|
|
|
|
| 170 |
)
|
| 171 |
|
| 172 |
-
char_seq = torch.from_numpy(padded_encoded_np).to(device=
|
| 173 |
-
char_len = torch.tensor([true_length], device=
|
| 174 |
|
| 175 |
return char_seq, char_len
|
| 176 |
|
|
@@ -179,20 +178,38 @@ def generate_strokes(
|
|
| 179 |
char_lengths: torch.Tensor,
|
| 180 |
max_gen_len: int,
|
| 181 |
api_bias: float,
|
| 182 |
-
|
| 183 |
) -> list[list[float]]:
|
| 184 |
"""Generate strokes using the model's built-in sample method"""
|
| 185 |
-
global
|
| 186 |
-
if
|
| 187 |
raise ValueError("Scripted model not initialized.")
|
| 188 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 189 |
with torch.no_grad():
|
| 190 |
try:
|
| 191 |
-
stroke_tensors =
|
| 192 |
char_seq,
|
| 193 |
char_lengths,
|
| 194 |
max_length=max_gen_len,
|
| 195 |
-
bias=api_bias
|
|
|
|
| 196 |
)
|
| 197 |
|
| 198 |
if len(stroke_tensors) == 1 and stroke_tensors[0].dim() == 2:
|
|
@@ -217,21 +234,24 @@ def generate_strokes(
|
|
| 217 |
|
| 218 |
@app.post("/generate", response_model=HandwritingResponse, tags=["Generation"])
|
| 219 |
async def generate_handwriting_endpoint(request: HandwritingRequest):
|
| 220 |
-
if not all([
|
| 221 |
logger.error("API not fully initialized. Check /health endpoint.")
|
| 222 |
raise HTTPException(
|
| 223 |
status_code=status.HTTP_503_SERVICE_UNAVAILABLE,
|
| 224 |
detail="Model or required resources not loaded."
|
| 225 |
)
|
| 226 |
|
| 227 |
-
assert
|
| 228 |
start_time = time.time()
|
| 229 |
|
| 230 |
try:
|
| 231 |
-
char_seq_tensor, char_lengths_tensor = text_to_tensor(request.text,
|
| 232 |
|
| 233 |
relative_stroke_offsets = generate_strokes(
|
| 234 |
-
char_seq_tensor, char_lengths_tensor,
|
|
|
|
|
|
|
|
|
|
| 235 |
)
|
| 236 |
|
| 237 |
if not relative_stroke_offsets:
|
|
|
|
| 8 |
import logging
|
| 9 |
import time
|
| 10 |
from contextlib import asynccontextmanager
|
| 11 |
+
from inference_utils import PrimingData, construct_alphabet_list, convert_offsets_to_absolute_coords, encode_text, get_alphabet_map, load_priming_data
|
| 12 |
|
| 13 |
logging.basicConfig(level=logging.INFO)
|
| 14 |
logger = logging.getLogger(__name__)
|
|
|
|
| 18 |
SCRIPTED_MODEL_NAME = "model.scripted.pt"
|
| 19 |
METADATA_MODEL_NAME = "model.pt"
|
| 20 |
|
| 21 |
+
SCRIPTED_MODEL: Optional[torch.jit.ScriptModule] = None
|
| 22 |
+
MODEL_METADATA: Optional[dict] = None
|
| 23 |
+
DEVICE: Optional[torch.device] = None
|
| 24 |
+
ALPHABET_MAP: Optional[dict[str, int]] = None
|
| 25 |
ALPHABET_LIST: Optional[list[str]] = None
|
| 26 |
ALPHABET_SIZE: Optional[int] = None
|
| 27 |
+
MAX_TEXT_LEN: Optional[int] = None
|
| 28 |
output_mixture_components: Optional[int] = None # To store num_mixtures for GMM sampling
|
| 29 |
lstm_size: Optional[int] = None
|
| 30 |
attention_mixture_components: Optional[int] = None
|
|
|
|
| 55 |
@asynccontextmanager
|
| 56 |
async def lifespan(app: FastAPI):
|
| 57 |
"""Lifespan context manager for startup and shutdown events"""
|
| 58 |
+
global SCRIPTED_MODEL, MODEL_METADATA, DEVICE, ALPHABET_MAP, MAX_TEXT_LEN, ALPHABET_LIST, output_mixture_components, lstm_size, attention_mixture_components, ALPHABET_SIZE
|
| 59 |
logger.info("Attempting to load model resources during startup")
|
| 60 |
try:
|
| 61 |
+
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 62 |
+
logger.info(f"Using device: {DEVICE}")
|
| 63 |
|
| 64 |
scripted_model_path = MODEL_DIR / SCRIPTED_MODEL_NAME
|
| 65 |
metadata_model_path = MODEL_DIR / METADATA_MODEL_NAME
|
| 66 |
+
if DEVICE.type == "cpu":
|
| 67 |
scripted_model_path = MODEL_DIR / QUANTIZED_MODEL_NAME
|
| 68 |
|
| 69 |
if not scripted_model_path.exists():
|
|
|
|
| 74 |
raise FileNotFoundError(f"Metadata model file not found at {metadata_model_path}")
|
| 75 |
|
| 76 |
# Load the traced model
|
| 77 |
+
SCRIPTED_MODEL = torch.jit.load(scripted_model_path, map_location=DEVICE)
|
| 78 |
+
if SCRIPTED_MODEL:
|
| 79 |
+
SCRIPTED_MODEL.eval()
|
| 80 |
logger.info(f"Traced model loaded successfully from {scripted_model_path}")
|
| 81 |
|
| 82 |
# Load the metadata
|
| 83 |
+
MODEL_METADATA = torch.load(metadata_model_path, map_location='cpu')
|
| 84 |
+
if MODEL_METADATA:
|
| 85 |
logger.info(f"Model metadata loaded successfully from {metadata_model_path}")
|
| 86 |
+
logger.info(f"Model metadata keys: {list(MODEL_METADATA.keys())}")
|
| 87 |
|
| 88 |
+
config_full = MODEL_METADATA['config_full']
|
| 89 |
if not config_full or not isinstance(config_full, dict):
|
| 90 |
raise ValueError(f"Key `config_full` not found or not a dict")
|
| 91 |
|
|
|
|
| 95 |
if not dataset_config or not isinstance(dataset_config, dict):
|
| 96 |
raise ValueError(f"Key `dataset` not found or not a dict in config_full")
|
| 97 |
alphabet_str = dataset_config['alphabet_string']
|
| 98 |
+
MAX_TEXT_LEN = dataset_config['max_text_len']
|
| 99 |
output_mixture_components = model_params['output_mixture_components']
|
| 100 |
|
| 101 |
lstm_size = model_params['lstm_size']
|
|
|
|
| 103 |
|
| 104 |
ALPHABET_LIST = construct_alphabet_list(alphabet_str)
|
| 105 |
ALPHABET_SIZE = len(ALPHABET_LIST)
|
| 106 |
+
ALPHABET_MAP = get_alphabet_map(ALPHABET_LIST)
|
| 107 |
|
| 108 |
logger.info(f"Alphabet created. Size: {len(ALPHABET_LIST)}")
|
| 109 |
logger.info("Model resources are loaded and ready")
|
|
|
|
| 112 |
|
| 113 |
except Exception as e:
|
| 114 |
logger.error(f"Error loading model resources: {e}", exc_info=True)
|
| 115 |
+
SCRIPTED_MODEL = None
|
| 116 |
+
MODEL_METADATA = None
|
| 117 |
raise
|
| 118 |
|
| 119 |
yield
|
| 120 |
|
| 121 |
# Cleanup on shutdown
|
| 122 |
logger.info("Shutting down API and cleaning up resources")
|
| 123 |
+
SCRIPTED_MODEL = None
|
| 124 |
+
MODEL_METADATA = None
|
| 125 |
|
| 126 |
app = FastAPI(
|
| 127 |
title="Scriptify API",
|
|
|
|
| 145 |
|
| 146 |
@app.get("/health", response_model=HealthResponse, tags=["General"])
|
| 147 |
async def health_check():
|
| 148 |
+
global SCRIPTED_MODEL, MODEL_METADATA, DEVICE, ALPHABET_MAP, MAX_TEXT_LEN, ALPHABET_LIST
|
| 149 |
|
| 150 |
+
is_healthy = all([SCRIPTED_MODEL, MODEL_METADATA, DEVICE, ALPHABET_MAP, MAX_TEXT_LEN, ALPHABET_LIST])
|
| 151 |
|
| 152 |
return HealthResponse(
|
| 153 |
status="healthy" if is_healthy else "unhealthy",
|
| 154 |
+
model_loaded=bool(SCRIPTED_MODEL),
|
| 155 |
+
device=str(DEVICE) if DEVICE else "unknown",
|
| 156 |
+
model_metadata_keys=list(MODEL_METADATA.keys()) if MODEL_METADATA else None,
|
| 157 |
)
|
| 158 |
|
| 159 |
+
def text_to_tensor(text: str, max_text_length: int, add_eos: bool = True) -> tuple[torch.Tensor, torch.Tensor]:
|
| 160 |
"""Convert text to tensor format expected by the model"""
|
| 161 |
+
if ALPHABET_MAP is None:
|
|
|
|
| 162 |
raise ValueError("Alphabet map not initialized during api startup")
|
| 163 |
+
|
|
|
|
| 164 |
padded_encoded_np, true_length = encode_text(
|
| 165 |
text=text,
|
| 166 |
+
char_to_index_map=ALPHABET_MAP,
|
| 167 |
+
max_length=max_text_length,
|
| 168 |
+
add_eos = add_eos
|
| 169 |
)
|
| 170 |
|
| 171 |
+
char_seq = torch.from_numpy(padded_encoded_np).to(device=DEVICE, dtype=torch.long)
|
| 172 |
+
char_len = torch.tensor([true_length], device=DEVICE, dtype=torch.long)
|
| 173 |
|
| 174 |
return char_seq, char_len
|
| 175 |
|
|
|
|
| 178 |
char_lengths: torch.Tensor,
|
| 179 |
max_gen_len: int,
|
| 180 |
api_bias: float,
|
| 181 |
+
style: Optional[int] = None
|
| 182 |
) -> list[list[float]]:
|
| 183 |
"""Generate strokes using the model's built-in sample method"""
|
| 184 |
+
global SCRIPTED_MODEL
|
| 185 |
+
if SCRIPTED_MODEL is None:
|
| 186 |
raise ValueError("Scripted model not initialized.")
|
| 187 |
|
| 188 |
+
primingData = None
|
| 189 |
+
|
| 190 |
+
if style is not None:
|
| 191 |
+
priming_text, priming_strokes = load_priming_data(style)
|
| 192 |
+
|
| 193 |
+
priming_text_tensor, priming_text_len_tensor = text_to_tensor(
|
| 194 |
+
priming_text, max_text_length=len(priming_text), add_eos=False)
|
| 195 |
+
|
| 196 |
+
priming_stroke_tensor = torch.tensor(priming_strokes,
|
| 197 |
+
dtype=torch.float32,
|
| 198 |
+
device=DEVICE).unsqueeze(dim=0)
|
| 199 |
+
|
| 200 |
+
primingData = PrimingData(priming_stroke_tensor,
|
| 201 |
+
char_seq_tensors=priming_text_tensor,
|
| 202 |
+
char_seq_lengths=priming_text_len_tensor)
|
| 203 |
+
|
| 204 |
+
|
| 205 |
with torch.no_grad():
|
| 206 |
try:
|
| 207 |
+
stroke_tensors = SCRIPTED_MODEL.sample(
|
| 208 |
char_seq,
|
| 209 |
char_lengths,
|
| 210 |
max_length=max_gen_len,
|
| 211 |
+
bias=api_bias,
|
| 212 |
+
prime=primingData
|
| 213 |
)
|
| 214 |
|
| 215 |
if len(stroke_tensors) == 1 and stroke_tensors[0].dim() == 2:
|
|
|
|
| 234 |
|
| 235 |
@app.post("/generate", response_model=HandwritingResponse, tags=["Generation"])
|
| 236 |
async def generate_handwriting_endpoint(request: HandwritingRequest):
|
| 237 |
+
if not all([SCRIPTED_MODEL, MODEL_METADATA, DEVICE, ALPHABET_MAP, MAX_TEXT_LEN]):
|
| 238 |
logger.error("API not fully initialized. Check /health endpoint.")
|
| 239 |
raise HTTPException(
|
| 240 |
status_code=status.HTTP_503_SERVICE_UNAVAILABLE,
|
| 241 |
detail="Model or required resources not loaded."
|
| 242 |
)
|
| 243 |
|
| 244 |
+
assert DEVICE is not None, "Device is None inside generate_handwriting"
|
| 245 |
start_time = time.time()
|
| 246 |
|
| 247 |
try:
|
| 248 |
+
char_seq_tensor, char_lengths_tensor = text_to_tensor(request.text, max_text_length=MAX_TEXT_LEN) # type: ignore
|
| 249 |
|
| 250 |
relative_stroke_offsets = generate_strokes(
|
| 251 |
+
char_seq_tensor, char_lengths_tensor,
|
| 252 |
+
request.max_length,
|
| 253 |
+
request.bias,
|
| 254 |
+
style=1 #TODO: style is hardcode since the current version is hosted on cpu
|
| 255 |
)
|
| 256 |
|
| 257 |
if not relative_stroke_offsets:
|