gyrojeff's picture
feat: add deepfont baseline
edd29d3
raw
history blame
11.6 kB
import torchmetrics
from . import config
from typing import Tuple, Dict, List, Any
import numpy as np
import torch
import torchvision
import torch.nn as nn
import pytorch_lightning as ptl
class DeepFontBaseline(nn.Module):
def __init__(self) -> None:
super().__init__()
self.model = nn.Sequential(
nn.Conv2d(3, 64, 11, 2),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.MaxPool2d(2, 2),
nn.Conv2d(64, 128, 3, 1, 1),
nn.BatchNorm2d(128),
nn.ReLU(),
nn.MaxPool2d(2, 2),
nn.Conv2d(128, 256, 3, 1, 1),
nn.ReLU(),
nn.Conv2d(256, 256, 3, 1, 1),
nn.ReLU(),
nn.Conv2d(256, 256, 3, 1, 1),
nn.ReLU(),
# fc
nn.Flatten(),
nn.Linear(256 * 12 * 12, 4096),
nn.ReLU(),
nn.Linear(4096, 4096),
nn.ReLU(),
nn.Linear(4096, config.FONT_COUNT),
)
def forward(self, X):
return self.model(X)
class ResNet18Regressor(nn.Module):
def __init__(self, pretrained: bool = False, regression_use_tanh: bool = False):
super().__init__()
weights = torchvision.models.ResNet18_Weights.DEFAULT if pretrained else None
self.model = torchvision.models.resnet18(weights=weights)
self.model.fc = nn.Linear(512, config.FONT_COUNT + 12)
self.regression_use_tanh = regression_use_tanh
def forward(self, X):
X = self.model(X)
# [0, 1]
if not self.regression_use_tanh:
X[..., config.FONT_COUNT + 2 :] = X[..., config.FONT_COUNT + 2 :].sigmoid()
else:
X[..., config.FONT_COUNT + 2 :] = X[..., config.FONT_COUNT + 2 :].tanh()
return X
class ResNet34Regressor(nn.Module):
def __init__(self, pretrained: bool = False, regression_use_tanh: bool = False):
super().__init__()
weights = torchvision.models.ResNet34_Weights.DEFAULT if pretrained else None
self.model = torchvision.models.resnet34(weights=weights)
self.model.fc = nn.Linear(512, config.FONT_COUNT + 12)
self.regression_use_tanh = regression_use_tanh
def forward(self, X):
X = self.model(X)
# [0, 1]
if not self.regression_use_tanh:
X[..., config.FONT_COUNT + 2 :] = X[..., config.FONT_COUNT + 2 :].sigmoid()
else:
X[..., config.FONT_COUNT + 2 :] = X[..., config.FONT_COUNT + 2 :].tanh()
return X
class ResNet50Regressor(nn.Module):
def __init__(self, pretrained: bool = False, regression_use_tanh: bool = False):
super().__init__()
weights = torchvision.models.ResNet50_Weights.DEFAULT if pretrained else None
self.model = torchvision.models.resnet50(weights=weights)
self.model.fc = nn.Linear(2048, config.FONT_COUNT + 12)
self.regression_use_tanh = regression_use_tanh
def forward(self, X):
X = self.model(X)
# [0, 1]
if not self.regression_use_tanh:
X[..., config.FONT_COUNT + 2 :] = X[..., config.FONT_COUNT + 2 :].sigmoid()
else:
X[..., config.FONT_COUNT + 2 :] = X[..., config.FONT_COUNT + 2 :].tanh()
return X
class ResNet101Regressor(nn.Module):
def __init__(self, pretrained: bool = False, regression_use_tanh: bool = False):
super().__init__()
weights = torchvision.models.ResNet101_Weights.DEFAULT if pretrained else None
self.model = torchvision.models.resnet101(weights=weights)
self.model.fc = nn.Linear(2048, config.FONT_COUNT + 12)
self.regression_use_tanh = regression_use_tanh
def forward(self, X):
X = self.model(X)
# [0, 1]
if not self.regression_use_tanh:
X[..., config.FONT_COUNT + 2 :] = X[..., config.FONT_COUNT + 2 :].sigmoid()
else:
X[..., config.FONT_COUNT + 2 :] = X[..., config.FONT_COUNT + 2 :].tanh()
return X
class FontDetectorLoss(nn.Module):
def __init__(
self, lambda_font, lambda_direction, lambda_regression, font_classification_only
):
super().__init__()
self.category_loss = nn.CrossEntropyLoss()
self.regression_loss = nn.MSELoss()
self.lambda_font = lambda_font
self.lambda_direction = lambda_direction
self.lambda_regression = lambda_regression
self.font_classfiication_only = font_classification_only
def forward(self, y_hat, y):
font_cat = self.category_loss(y_hat[..., : config.FONT_COUNT], y[..., 0].long())
if self.font_classfiication_only:
return self.lambda_font * font_cat
direction_cat = self.category_loss(
y_hat[..., config.FONT_COUNT : config.FONT_COUNT + 2], y[..., 1].long()
)
regression = self.regression_loss(
y_hat[..., config.FONT_COUNT + 2 :], y[..., 2:]
)
return (
self.lambda_font * font_cat
+ self.lambda_direction * direction_cat
+ self.lambda_regression * regression
)
class CosineWarmupScheduler(torch.optim.lr_scheduler._LRScheduler):
def __init__(self, optimizer, warmup, max_iters):
self.warmup = warmup
self.max_num_iters = max_iters
super().__init__(optimizer)
def get_lr(self):
lr_factor = self.get_lr_factor(epoch=self.last_epoch)
return [base_lr * lr_factor for base_lr in self.base_lrs]
def get_lr_factor(self, epoch):
lr_factor = 0.5 * (1 + np.cos(np.pi * epoch / self.max_num_iters))
if epoch <= self.warmup:
lr_factor *= epoch * 1.0 / self.warmup
return lr_factor
class FontDetector(ptl.LightningModule):
def __init__(
self,
model: nn.Module,
lambda_font: float,
lambda_direction: float,
lambda_regression: float,
font_classification_only: bool,
lr: float,
betas: Tuple[float, float],
num_warmup_iters: int,
num_iters: int,
num_epochs: int,
):
super().__init__()
self.model = model
self.loss = FontDetectorLoss(
lambda_font, lambda_direction, lambda_regression, font_classification_only
)
self.font_accur_train = torchmetrics.Accuracy(
task="multiclass", num_classes=config.FONT_COUNT
)
self.font_accur_val = torchmetrics.Accuracy(
task="multiclass", num_classes=config.FONT_COUNT
)
self.font_accur_test = torchmetrics.Accuracy(
task="multiclass", num_classes=config.FONT_COUNT
)
if not font_classification_only:
self.direction_accur_train = torchmetrics.Accuracy(
task="multiclass", num_classes=2
)
self.direction_accur_val = torchmetrics.Accuracy(
task="multiclass", num_classes=2
)
self.direction_accur_test = torchmetrics.Accuracy(
task="multiclass", num_classes=2
)
self.lr = lr
self.betas = betas
self.num_warmup_iters = num_warmup_iters
self.num_iters = num_iters
self.num_epochs = num_epochs
self.load_epoch = 0
self.font_classification_only = font_classification_only
def forward(self, x):
return self.model(x)
def training_step(
self, batch: Tuple[torch.Tensor, torch.Tensor], batch_idx: int
) -> Dict[str, Any]:
X, y = batch
y_hat = self.forward(X)
loss = self.loss(y_hat, y)
self.log("train_loss", loss, prog_bar=True, sync_dist=True)
# accur
self.log(
"train_font_accur",
self.font_accur_train(y_hat[..., : config.FONT_COUNT], y[..., 0]),
sync_dist=True,
)
if not self.font_classification_only:
self.log(
"train_direction_accur",
self.direction_accur_train(
y_hat[..., config.FONT_COUNT : config.FONT_COUNT + 2], y[..., 1]
),
sync_dist=True,
)
return {"loss": loss}
def on_train_epoch_end(self) -> None:
self.log("train_font_accur", self.font_accur_train.compute(), sync_dist=True)
self.font_accur_train.reset()
if not self.font_classification_only:
self.log(
"train_direction_accur",
self.direction_accur_train.compute(),
sync_dist=True,
)
self.direction_accur_train.reset()
def validation_step(
self, batch: Tuple[torch.Tensor, torch.Tensor], batch_idx: int
) -> Dict[str, Any]:
X, y = batch
y_hat = self.forward(X)
loss = self.loss(y_hat, y)
self.log("val_loss", loss, prog_bar=True, sync_dist=True)
self.font_accur_val.update(y_hat[..., : config.FONT_COUNT], y[..., 0])
if not self.font_classification_only:
self.direction_accur_val.update(
y_hat[..., config.FONT_COUNT : config.FONT_COUNT + 2], y[..., 1]
)
return {"loss": loss}
def on_validation_epoch_end(self):
self.log("val_font_accur", self.font_accur_val.compute(), sync_dist=True)
self.font_accur_val.reset()
if not self.font_classification_only:
self.log(
"val_direction_accur",
self.direction_accur_val.compute(),
sync_dist=True,
)
self.direction_accur_val.reset()
def test_step(self, batch: Tuple[torch.Tensor, torch.Tensor], batch_idx: int):
X, y = batch
y_hat = self.forward(X)
loss = self.loss(y_hat, y)
self.log("test_loss", loss, prog_bar=True, sync_dist=True)
self.font_accur_test.update(y_hat[..., : config.FONT_COUNT], y[..., 0])
if not self.font_classification_only:
self.direction_accur_test.update(
y_hat[..., config.FONT_COUNT : config.FONT_COUNT + 2], y[..., 1]
)
return {"loss": loss}
def on_test_epoch_end(self) -> None:
self.log("test_font_accur", self.font_accur_test.compute(), sync_dist=True)
self.font_accur_test.reset()
if not self.font_classification_only:
self.log(
"test_direction_accur",
self.direction_accur_test.compute(),
sync_dist=True,
)
self.direction_accur_test.reset()
def configure_optimizers(self):
optimizer = torch.optim.Adam(
self.model.parameters(), lr=self.lr, betas=self.betas
)
self.scheduler = CosineWarmupScheduler(
optimizer, self.num_warmup_iters, self.num_iters
)
print("Load epoch:", self.load_epoch)
for _ in range(self.num_iters * self.load_epoch // self.num_epochs):
self.scheduler.step()
print("Current learning rate set to:", self.scheduler.get_last_lr())
return optimizer
def optimizer_step(
self,
epoch: int,
batch_idx: int,
optimizer,
optimizer_idx: int = 0,
*args,
**kwargs
):
super().optimizer_step(
epoch, batch_idx, optimizer, optimizer_idx, *args, **kwargs
)
self.log("lr", self.scheduler.get_last_lr()[0])
self.scheduler.step()
def on_load_checkpoint(self, checkpoint: Dict[str, Any]) -> None:
self.load_epoch = checkpoint["epoch"]