gyrojeff's picture
feat: add model and ptl training loop
3631068
raw
history blame
5.57 kB
import torchmetrics
from . import config
from typing import Tuple, Dict, List, Any
import numpy as np
import torch
import torchvision
import torch.nn as nn
import pytorch_lightning as ptl
class ResNet18Regressor(nn.Module):
def __init__(self):
super().__init__()
self.model = torchvision.models.resnet18(pretrained=False)
self.model.fc = nn.Linear(512, config.FONT_COUNT + 12)
def forward(self, X):
X = self.model(X)
# [0, 1]
X[..., config.FONT_COUNT + 2 :] = X[..., config.FONT_COUNT + 2 :].sigmoid()
return X
class FontDetectorLoss(nn.Module):
def __init__(self, lambda_font, lambda_direction, lambda_regression):
super().__init__()
self.category_loss = nn.CrossEntropyLoss()
self.regression_loss = nn.MSELoss()
self.lambda_font = lambda_font
self.lambda_direction = lambda_direction
self.lambda_regression = lambda_regression
def forward(self, y_hat, y):
font_cat = self.category_loss(y_hat[..., : config.FONT_COUNT], y[..., 0].long())
direction_cat = self.category_loss(
y_hat[..., config.FONT_COUNT : config.FONT_COUNT + 2], y[..., 1].long()
)
regression = self.regression_loss(
y_hat[..., config.FONT_COUNT + 2 :], y[..., 2:]
)
return (
self.lambda_font * font_cat
+ self.lambda_direction * direction_cat
+ self.lambda_regression * regression
)
class CosineWarmupScheduler(torch.optim.lr_scheduler._LRScheduler):
def __init__(self, optimizer, warmup, max_iters):
self.warmup = warmup
self.max_num_iters = max_iters
super().__init__(optimizer)
def get_lr(self):
lr_factor = self.get_lr_factor(epoch=self.last_epoch)
return [base_lr * lr_factor for base_lr in self.base_lrs]
def get_lr_factor(self, epoch):
lr_factor = 0.5 * (1 + np.cos(np.pi * epoch / self.max_num_iters))
if epoch <= self.warmup:
lr_factor *= epoch * 1.0 / self.warmup
return lr_factor
class FontDetector(ptl.LightningModule):
def __init__(
self,
model: nn.Module,
lambda_font: float,
lambda_direction: float,
lambda_regression: float,
lr: float,
betas: Tuple[float, float],
num_warmup_iters: int,
num_iters: int,
):
super().__init__()
self.model = model
self.loss = FontDetectorLoss(lambda_font, lambda_direction, lambda_regression)
self.font_accur_train = torchmetrics.Accuracy(
task="multiclass", num_classes=config.FONT_COUNT
)
self.direction_accur_train = torchmetrics.Accuracy(
task="multiclass", num_classes=2
)
self.font_accur_val = torchmetrics.Accuracy(
task="multiclass", num_classes=config.FONT_COUNT
)
self.direction_accur_val = torchmetrics.Accuracy(
task="multiclass", num_classes=2
)
self.lr = lr
self.betas = betas
self.num_warmup_iters = num_warmup_iters
self.num_iters = num_iters
def forward(self, x):
return self.model(x)
def training_step(
self, batch: Tuple[torch.Tensor, torch.Tensor], batch_idx: int
) -> Dict[str, Any]:
X, y = batch
y_hat = self.forward(X)
loss = self.loss(y_hat, y)
self.log("train_loss", loss, prog_bar=True)
return {"loss": loss, "pred": y_hat, "target": y}
def training_step_end(self, outputs):
y_hat = outputs["pred"]
y = outputs["target"]
self.log(
"train_font_accur",
self.font_accur_train(y_hat[..., : config.FONT_COUNT], y[..., 0]),
)
self.log(
"train_direction_accur",
self.direction_accur_train(
y_hat[..., config.FONT_COUNT : config.FONT_COUNT + 2], y[..., 1]
),
)
def training_epoch_end(self, outputs) -> None:
self.font_accur_train.reset()
self.direction_accur_train.reset()
def validation_step(
self, batch: Tuple[torch.Tensor, torch.Tensor], batch_idx: int
) -> Dict[str, Any]:
X, y = batch
y_hat = self.forward(X)
loss = self.loss(y_hat, y)
self.log("val_loss", loss, prog_bar=True)
self.font_accur_val.update(y_hat[..., : config.FONT_COUNT], y[..., 0])
self.direction_accur_val.update(
y_hat[..., config.FONT_COUNT : config.FONT_COUNT + 2], y[..., 1]
)
return {"loss": loss, "pred": y_hat, "target": y}
def validation_epoch_end(self, outputs):
self.log("val_font_accur", self.font_accur_val.compute())
self.log("val_direction_accur", self.direction_accur_val.compute())
self.font_accur_val.reset()
self.direction_accur_val.reset()
def configure_optimizers(self):
optimizer = torch.optim.Adam(
self.model.parameters(), lr=self.lr, betas=self.betas
)
self.scheduler = CosineWarmupScheduler(
optimizer, self.num_warmup_iters, self.num_iters
)
return optimizer
def optimizer_step(
self,
epoch: int,
batch_idx: int,
optimizer,
optimizer_idx: int = 0,
*args,
**kwargs
):
super().optimizer_step(
epoch, batch_idx, optimizer, optimizer_idx, *args, **kwargs
)
self.log("lr", self.scheduler.get_last_lr()[0])
self.scheduler.step()