gyesibiney's picture
Update app.py
68e2c3d verified
import gradio as gr
import transformers as pipeline
from transformers import AutoTokenizer,AutoModelForSequenceClassification
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
model_name = "gyesibiney/covid-tweet-sentimental-Analysis-roberta"
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
sentiment = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
def get_sentiment(input_text):
result = sentiment(input_text)
sentiment_label = result[0]['label']
sentiment_score = result[0]['score']
if sentiment_label == 'LABEL_1':
sentiment_label = "positive"
elif sentiment_label == 'LABEL_0':
sentiment_label = "neutral"
else:
sentiment_label = "negative"
return f"Sentiment: {sentiment_label.capitalize()}, Score: {sentiment_score:.2f}"
iface = gr.Interface(fn=get_sentiment, inputs=gr.inputs.Textbox(), outputs=gr.outputs.Textbox())
iface.launch(inline=True)