OneRestore / utils /utils_data.py
gy65896's picture
Upload 36 files
2940390 verified
raw
history blame
3.43 kB
import torch, os
from PIL import Image
import numpy as np
import torchvision.transforms as transforms
import torch.utils.data as data
from einops import rearrange
class ImageLoader:
def __init__(self, root):
self.img_dir = root
def __call__(self, img):
file = f'{self.img_dir}/{img}'
img = Image.open(file).convert('RGB')
return img
def imagenet_transform(phase):
if phase == 'train':
transform = transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor()
])
elif phase == 'test':
transform = transforms.Compose([
transforms.Resize([224,224]),
transforms.ToTensor()
])
return transform
class Dataset_embedding(data.Dataset):
def __init__(self, cfg_data, phase='train'):
self.transform = imagenet_transform(phase)
self.type_name = cfg_data.type_name
self.type2idx = {self.type_name[i]: i for i in range(len(self.type_name))}
if phase == 'train':
self.loader = ImageLoader(cfg_data.train_dir)
name = os.listdir(f'{cfg_data.train_dir}/{self.type_name[0]}')
self.data = []
for i in range(len(self.type_name)):
for j in range(len(name)):
self.data.append([self.type_name[i], name[j]])
elif phase == 'test':
self.loader = ImageLoader(cfg_data.test_dir)
name = os.listdir(f'{cfg_data.test_dir}/{self.type_name[0]}')
self.data = []
for i in range(1, len(self.type_name)):
for j in range(len(name)):
self.data.append([self.type_name[i], name[j]])
print(f'The amount of {phase} data is {len(self.data)}')
def __getitem__(self, index):
type_name, image_name = self.data[index]
scene = self.type2idx[type_name]
image = self.transform(self.loader(f'{type_name}/{image_name}'))
return (scene, image)
def __len__(self):
return len(self.data)
def init_embedding_data(cfg_em, phase):
if phase == 'train':
train_dataset = Dataset_embedding(cfg_em, 'train')
test_dataset = Dataset_embedding(cfg_em, 'test')
train_loader = data.DataLoader(train_dataset,
batch_size=cfg_em.batch,
shuffle=True,
num_workers=cfg_em.num_workers,
pin_memory=True)
test_loader = data.DataLoader(test_dataset,
batch_size=cfg_em.batch,
shuffle=False,
num_workers=cfg_em.num_workers,
pin_memory=True)
print(len(train_dataset),len(test_dataset))
elif phase == 'inference':
test_dataset = Dataset_embedding(cfg_em, 'test')
test_loader = data.DataLoader(test_dataset,
batch_size=1,
shuffle=False,
num_workers=cfg_em.num_workers,
pin_memory=True)
return train_loader, test_loader