Upload first working version
Browse files- README.md +1 -7
- main.py +107 -0
- requirements.txt +81 -0
README.md
CHANGED
@@ -1,12 +1,6 @@
|
|
1 |
---
|
2 |
title: Subspace
|
3 |
-
|
4 |
-
colorFrom: red
|
5 |
-
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.35.2
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
---
|
11 |
-
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
title: Subspace
|
3 |
+
app_file: main.py
|
|
|
|
|
4 |
sdk: gradio
|
5 |
sdk_version: 3.35.2
|
|
|
|
|
6 |
---
|
|
|
|
main.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from datasets import load_dataset
|
3 |
+
from transformers import AutoTokenizer, AutoModel
|
4 |
+
import torch
|
5 |
+
import pandas as pd
|
6 |
+
import os
|
7 |
+
|
8 |
+
os.environ['CURL_CA_BUNDLE'] = ''
|
9 |
+
|
10 |
+
# Load dataset
|
11 |
+
issues_dataset = load_dataset("gvozdev/subspace-info-v2", split="train")
|
12 |
+
|
13 |
+
# Load tokenizer and model
|
14 |
+
model_ckpt = "sentence-transformers/all-MiniLM-L12-v1"
|
15 |
+
tokenizer = AutoTokenizer.from_pretrained(model_ckpt)
|
16 |
+
model = AutoModel.from_pretrained(model_ckpt, trust_remote_code=True)
|
17 |
+
|
18 |
+
# Text concatenation - not used in this case as mapping only on subject returns better results
|
19 |
+
# def concatenate_text(examples):
|
20 |
+
# return {
|
21 |
+
# "text": examples["subject"]
|
22 |
+
# + " \n "
|
23 |
+
# + examples["details"]
|
24 |
+
# }
|
25 |
+
|
26 |
+
|
27 |
+
issues_dataset = issues_dataset.map()
|
28 |
+
|
29 |
+
# To speed up embedding, we can switch to GPU (change device to "cuda") - for larger models
|
30 |
+
device = torch.device("cpu")
|
31 |
+
model.to(device)
|
32 |
+
|
33 |
+
|
34 |
+
# CLS pooling on model’s outputs: collect the last hidden state for the special [CLS] token
|
35 |
+
def cls_pooling(model_output):
|
36 |
+
return model_output.last_hidden_state[:, 0]
|
37 |
+
|
38 |
+
|
39 |
+
# Tokenize a list of documents, place the tensors on the CPU/GPU, feed them to the model,
|
40 |
+
# and apply CLS pooling to the outputs
|
41 |
+
def get_embeddings(text_list):
|
42 |
+
encoded_input = tokenizer(
|
43 |
+
text_list, padding=True, truncation=True, return_tensors="pt"
|
44 |
+
)
|
45 |
+
encoded_input = {k: v.to(device) for k, v in encoded_input.items()}
|
46 |
+
model_output = model(**encoded_input)
|
47 |
+
return cls_pooling(model_output)
|
48 |
+
|
49 |
+
# Test if the function works
|
50 |
+
# embedding = get_embeddings(issues_dataset["details"][0])
|
51 |
+
# print(embedding.shape)
|
52 |
+
|
53 |
+
|
54 |
+
# Use Dataset.map() to apply get_embeddings() function to each row in the dataset and create a new "embeddings" column
|
55 |
+
# Convert the embeddings to NumPy arrays as Datasets requires this format when we try to index them with FAISS
|
56 |
+
embeddings_dataset = issues_dataset.map(
|
57 |
+
lambda x: {"embeddings": get_embeddings(x["subject"]).detach().cpu().numpy()[0]}
|
58 |
+
)
|
59 |
+
|
60 |
+
# Create a FAISS index
|
61 |
+
embeddings_dataset.add_faiss_index(column="embeddings")
|
62 |
+
|
63 |
+
|
64 |
+
#
|
65 |
+
def answer_question(question):
|
66 |
+
# Get an embedding for the question
|
67 |
+
question_embedding = get_embeddings([question]).cpu().detach().numpy()
|
68 |
+
|
69 |
+
# Find a nearest neighbor in our dataset
|
70 |
+
scores, samples = embeddings_dataset.get_nearest_examples(
|
71 |
+
"embeddings", question_embedding, k=1
|
72 |
+
)
|
73 |
+
|
74 |
+
samples_df = pd.DataFrame.from_dict(samples)
|
75 |
+
|
76 |
+
# This part is needed in case we use k>1
|
77 |
+
# samples_df["scores"] = scores
|
78 |
+
# samples_df.sort_values("scores", ascending=False, inplace=True)
|
79 |
+
|
80 |
+
return samples_df["details"].values[0]
|
81 |
+
|
82 |
+
|
83 |
+
# Gradio interface
|
84 |
+
title = "Subspace Docs bot"
|
85 |
+
description = '<p style="text-align: center;">This is a bot trained on Subspace Network documentation ' \
|
86 |
+
'to answer the most common questions about the project</p>'
|
87 |
+
|
88 |
+
|
89 |
+
def chat(message, history):
|
90 |
+
history = history or []
|
91 |
+
response = answer_question(message)
|
92 |
+
history.append((message, response))
|
93 |
+
return history, history
|
94 |
+
|
95 |
+
|
96 |
+
iface = gr.Interface(
|
97 |
+
chat,
|
98 |
+
["text", "state"],
|
99 |
+
["chatbot", "state"],
|
100 |
+
allow_flagging="never",
|
101 |
+
title=title,
|
102 |
+
description=description,
|
103 |
+
theme="Monochrome",
|
104 |
+
examples=["What is Subspace Network?", "Do you have a token?", "System requirements"]
|
105 |
+
)
|
106 |
+
|
107 |
+
iface.launch(share=True)
|
requirements.txt
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
aiofiles==23.1.0
|
2 |
+
aiohttp==3.8.4
|
3 |
+
aiosignal==1.3.1
|
4 |
+
altair==5.0.1
|
5 |
+
anyio==3.7.0
|
6 |
+
async-timeout==4.0.2
|
7 |
+
attrs==23.1.0
|
8 |
+
certifi==2023.5.7
|
9 |
+
charset-normalizer==3.1.0
|
10 |
+
click==8.1.3
|
11 |
+
contourpy==1.1.0
|
12 |
+
cycler==0.11.0
|
13 |
+
datasets==2.13.1
|
14 |
+
dill==0.3.6
|
15 |
+
einops==0.6.1
|
16 |
+
evaluate==0.4.0
|
17 |
+
exceptiongroup==1.1.1
|
18 |
+
faiss-cpu==1.7.4
|
19 |
+
fastapi==0.98.0
|
20 |
+
ffmpy==0.3.0
|
21 |
+
filelock==3.12.2
|
22 |
+
fonttools==4.40.0
|
23 |
+
frozenlist==1.3.3
|
24 |
+
fsspec==2023.6.0
|
25 |
+
gradio==3.35.2
|
26 |
+
gradio_client==0.2.7
|
27 |
+
h11==0.14.0
|
28 |
+
httpcore==0.17.2
|
29 |
+
httpx==0.24.1
|
30 |
+
huggingface-hub==0.15.1
|
31 |
+
idna==3.4
|
32 |
+
Jinja2==3.1.2
|
33 |
+
jsonschema==4.17.3
|
34 |
+
kiwisolver==1.4.4
|
35 |
+
linkify-it-py==2.0.2
|
36 |
+
markdown-it-py==2.2.0
|
37 |
+
MarkupSafe==2.1.3
|
38 |
+
matplotlib==3.7.1
|
39 |
+
mdit-py-plugins==0.3.3
|
40 |
+
mdurl==0.1.2
|
41 |
+
mpmath==1.3.0
|
42 |
+
multidict==6.0.4
|
43 |
+
multiprocess==0.70.14
|
44 |
+
networkx==3.1
|
45 |
+
numpy==1.25.0
|
46 |
+
orjson==3.9.1
|
47 |
+
packaging==23.1
|
48 |
+
pandas==2.0.3
|
49 |
+
Pillow==9.5.0
|
50 |
+
pyarrow==12.0.1
|
51 |
+
pydantic==1.10.9
|
52 |
+
pydub==0.25.1
|
53 |
+
Pygments==2.15.1
|
54 |
+
pyparsing==3.1.0
|
55 |
+
pyrsistent==0.19.3
|
56 |
+
python-dateutil==2.8.2
|
57 |
+
python-multipart==0.0.6
|
58 |
+
pytz==2023.3
|
59 |
+
PyYAML==6.0
|
60 |
+
regex==2023.6.3
|
61 |
+
requests==2.27.1
|
62 |
+
responses==0.18.0
|
63 |
+
safetensors==0.3.1
|
64 |
+
semantic-version==2.10.0
|
65 |
+
six==1.16.0
|
66 |
+
sniffio==1.3.0
|
67 |
+
starlette==0.27.0
|
68 |
+
sympy==1.12
|
69 |
+
tokenizers==0.13.3
|
70 |
+
toolz==0.12.0
|
71 |
+
torch==2.0.1
|
72 |
+
tqdm==4.65.0
|
73 |
+
transformers==4.30.2
|
74 |
+
typing_extensions==4.7.0
|
75 |
+
tzdata==2023.3
|
76 |
+
uc-micro-py==1.0.2
|
77 |
+
urllib3==2.0.3
|
78 |
+
uvicorn==0.22.0
|
79 |
+
websockets==11.0.3
|
80 |
+
xxhash==3.2.0
|
81 |
+
yarl==1.9.2
|