Spaces:
Paused
Paused
import os | |
import sys | |
import torch | |
import pickle | |
import random | |
import json | |
import torch.nn as nn | |
from datasets import load_dataset | |
import transformers | |
from transformers import LlamaForCausalLM, LlamaTokenizer | |
from peft import ( | |
prepare_model_for_int8_training, | |
LoraConfig, | |
get_peft_model, | |
get_peft_model_state_dict, | |
) | |
HF_TOKEN = os.environ.get("TRL_TOKEN", None) | |
if HF_TOKEN: | |
print(HF_TOKEN) | |
repo = Repository( | |
local_dir="./checkpoints/", clone_from="gustavoaq/llama_ft", use_auth_token=HF_TOKEN, repo_type="models" | |
) | |
repo.git_pull() | |
# Parameters | |
MICRO_BATCH_SIZE = 16 | |
BATCH_SIZE = 32 | |
size = "7b" | |
GRADIENT_ACCUMULATION_STEPS = BATCH_SIZE // MICRO_BATCH_SIZE | |
EPOCHS = 1 | |
LEARNING_RATE = float(0.00015) | |
CUTOFF_LEN = 512 | |
LORA_R = 8 | |
LORA_ALPHA = 16 | |
LORA_DROPOUT = 0.05 | |
VAL_SET_SIZE = 2000 | |
TARGET_MODULES = [ | |
"q_proj", | |
"k_proj", | |
"v_proj", | |
"down_proj", | |
"gate_proj", | |
"up_proj", | |
] | |
DATA_PATH = "data/data_tmp.json" | |
OUTPUT_DIR = "checkpoints/{}".format(size) | |
if not os.path.exists("data"): | |
os.makedirs("data") | |
# Load data | |
data = [] | |
for x in "alpaca,stackoverflow,quora".split(","): | |
data += json.load(open("data/{}_chat_data.json".format(x))) | |
random.shuffle(data) | |
json.dump(data, open(DATA_PATH, "w")) | |
data = load_dataset("json", data_files=DATA_PATH) | |
# Load Model | |
device_map = "auto" | |
world_size = int(os.environ.get("WORLD_SIZE", 1)) | |
ddp = world_size != 1 | |
if ddp: | |
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)} | |
GRADIENT_ACCUMULATION_STEPS = GRADIENT_ACCUMULATION_STEPS // world_size | |
model = LlamaForCausalLM.from_pretrained( | |
"decapoda-research/llama-{}-hf".format(size), | |
load_in_8bit=True, | |
device_map='auto', | |
) | |
total_params, params = 0, 0 | |
tokenizer = LlamaTokenizer.from_pretrained( | |
"decapoda-research/llama-{}-hf".format(size), add_eos_token=True, | |
load_in_8bit_fp32_cpu_offload=True, device_map={0: [0]}, | |
) | |
model = prepare_model_for_int8_training(model) | |
config = LoraConfig( | |
r=LORA_R, | |
lora_alpha=LORA_ALPHA, | |
target_modules=TARGET_MODULES, | |
lora_dropout=LORA_DROPOUT, | |
bias="none", | |
task_type="CAUSAL_LM", | |
) | |
config.save_pretrained(OUTPUT_DIR) | |
model = get_peft_model(model, config) | |
tokenizer.pad_token_id = 0 | |
for n, p in model.model.named_parameters(): | |
if any([x in n for x in ["lora"]]): | |
total_params += p.numel() | |
params += p.numel() | |
print( | |
"Total number of parameters: {}M, rate: {}%".format( | |
total_params // 1000 / 1000, round(total_params / params * 100, 2) | |
) | |
) | |
# Data Preprocess | |
def generate_prompt(data_point): | |
return data_point["input"] | |
def tokenize(prompt): | |
result = tokenizer( | |
prompt, | |
truncation=True, | |
max_length=CUTOFF_LEN + 1, | |
padding="max_length", | |
) | |
return { | |
"input_ids": result["input_ids"][:-1], | |
"attention_mask": result["attention_mask"][:-1], | |
} | |
def generate_and_tokenize_prompt(data_point): | |
prompt = generate_prompt(data_point) | |
return tokenize(prompt) | |
if VAL_SET_SIZE > 0: | |
train_val = data["train"].train_test_split( | |
test_size=VAL_SET_SIZE, shuffle=True, seed=42 | |
) | |
train_data = train_val["train"].shuffle().map(generate_and_tokenize_prompt) | |
val_data = train_val["test"].shuffle().map(generate_and_tokenize_prompt) | |
else: | |
train_data = data["train"].shuffle().map(generate_and_tokenize_prompt) | |
val_data = None | |
# Training | |
trainer = transformers.Trainer( | |
model=model, | |
train_dataset=train_data, | |
eval_dataset=val_data, | |
args=transformers.TrainingArguments( | |
per_device_train_batch_size=MICRO_BATCH_SIZE, | |
per_device_eval_batch_size=MICRO_BATCH_SIZE, | |
gradient_accumulation_steps=GRADIENT_ACCUMULATION_STEPS, | |
warmup_steps=100, | |
num_train_epochs=EPOCHS, | |
learning_rate=LEARNING_RATE, | |
fp16=True, | |
logging_steps=20, | |
evaluation_strategy="steps" if VAL_SET_SIZE > 0 else "no", | |
save_strategy="steps", | |
eval_steps=200 if VAL_SET_SIZE > 0 else None, | |
save_steps=200, | |
output_dir=OUTPUT_DIR, | |
save_total_limit=100, | |
load_best_model_at_end=True if VAL_SET_SIZE > 0 else False, | |
ddp_find_unused_parameters=False if ddp else None, | |
), | |
data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False), | |
) | |
model.config.use_cache = False | |
old_state_dict = model.state_dict | |
model.state_dict = ( | |
lambda self, *_, **__: get_peft_model_state_dict(self, old_state_dict()) | |
).__get__(model, type(model)) | |
import gradio as gr | |
def train(input_text): | |
print(os.listdir(OUTPUT_DIR)) | |
# Call your trainer's train() function here | |
trainer.train() | |
print("Training complete.") # optional message to display when training is done | |
model.save_pretrained(OUTPUT_DIR) | |
repo.push_to_hub(OUTPUT_DIR, commit_message="Ft model") | |
iface = gr.Interface( | |
fn=train, | |
inputs=gr.inputs.Textbox(label="Input text"), | |
outputs=gr.outputs.Textbox(label="Output length"), | |
title="Training Interface", | |
description="Enter some text and click the button to start training.", | |
theme="default", | |
layout="vertical", | |
allow_flagging=False, | |
allow_screenshot=False | |
) | |
iface.launch(share=True) | |