Spaces:
Runtime error
Runtime error
import numpy as np | |
import torch | |
from imagedream.camera_utils import get_camera_for_index | |
from imagedream.ldm.util import set_seed, add_random_background | |
from libs.base_utils import do_resize_content | |
from imagedream.ldm.models.diffusion.ddim import DDIMSampler | |
from torchvision import transforms as T | |
class ImageDreamDiffusion: | |
def __init__( | |
self, | |
model, | |
device, | |
dtype, | |
mode, | |
num_frames, | |
camera_views, | |
ref_position, | |
random_background=False, | |
offset_noise=False, | |
resize_rate=1, | |
image_size=256, | |
seed=1234, | |
) -> None: | |
assert mode in ["pixel", "local"] | |
size = image_size | |
self.seed = seed | |
batch_size = max(4, num_frames) | |
neg_texts = "uniform low no texture ugly, boring, bad anatomy, blurry, pixelated, obscure, unnatural colors, poor lighting, dull, and unclear." | |
uc = model.get_learned_conditioning([neg_texts]).to(device) | |
sampler = DDIMSampler(model) | |
# pre-compute camera matrices | |
camera = [get_camera_for_index(i).squeeze() for i in camera_views] | |
camera[ref_position] = torch.zeros_like(camera[ref_position]) # set ref camera to zero | |
camera = torch.stack(camera) | |
camera = camera.repeat(batch_size // num_frames, 1).to(device) | |
self.image_transform = T.Compose( | |
[ | |
T.Resize((size, size)), | |
T.ToTensor(), | |
T.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), | |
] | |
) | |
self.dtype = dtype | |
self.ref_position = ref_position | |
self.mode = mode | |
self.random_background = random_background | |
self.resize_rate = resize_rate | |
self.num_frames = num_frames | |
self.size = size | |
self.device = device | |
self.batch_size = batch_size | |
self.model = model | |
self.sampler = sampler | |
self.uc = uc | |
self.camera = camera | |
self.offset_noise = offset_noise | |
def i2i( | |
model, | |
image_size, | |
prompt, | |
uc, | |
sampler, | |
ip=None, | |
step=20, | |
scale=5.0, | |
batch_size=8, | |
ddim_eta=0.0, | |
dtype=torch.float32, | |
device="cuda", | |
camera=None, | |
num_frames=4, | |
pixel_control=False, | |
transform=None, | |
offset_noise=False, | |
): | |
""" The function supports additional image prompt. | |
Args: | |
model (_type_): the image dream model | |
image_size (_type_): size of diffusion output (standard 256) | |
prompt (_type_): text prompt for the image (prompt in type str) | |
uc (_type_): unconditional vector (tensor in shape [1, 77, 1024]) | |
sampler (_type_): imagedream.ldm.models.diffusion.ddim.DDIMSampler | |
ip (Image, optional): the image prompt. Defaults to None. | |
step (int, optional): _description_. Defaults to 20. | |
scale (float, optional): _description_. Defaults to 7.5. | |
batch_size (int, optional): _description_. Defaults to 8. | |
ddim_eta (float, optional): _description_. Defaults to 0.0. | |
dtype (_type_, optional): _description_. Defaults to torch.float32. | |
device (str, optional): _description_. Defaults to "cuda". | |
camera (_type_, optional): camera info in tensor, shape: torch.Size([5, 16]) mean: 0.11, std: 0.49, min: -1.00, max: 1.00 | |
num_frames (int, optional): _num of frames (views) to generate | |
pixel_control: whether to use pixel conditioning. Defaults to False, True when using pixel mode | |
transform: Compose( | |
Resize(size=(256, 256), interpolation=bilinear, max_size=None, antialias=warn) | |
ToTensor() | |
Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)) | |
) | |
""" | |
ip_raw = ip | |
if type(prompt) != list: | |
prompt = [prompt] | |
with torch.no_grad(), torch.autocast(device_type=torch.device(device).type, dtype=dtype): | |
c = model.get_learned_conditioning(prompt).to( | |
device | |
) # shape: torch.Size([1, 77, 1024]) mean: -0.17, std: 1.02, min: -7.50, max: 13.05 | |
c_ = {"context": c.repeat(batch_size, 1, 1)} # batch_size | |
uc_ = {"context": uc.repeat(batch_size, 1, 1)} | |
if camera is not None: | |
c_["camera"] = uc_["camera"] = ( | |
camera # shape: torch.Size([5, 16]) mean: 0.11, std: 0.49, min: -1.00, max: 1.00 | |
) | |
c_["num_frames"] = uc_["num_frames"] = num_frames | |
if ip is not None: | |
ip_embed = model.get_learned_image_conditioning(ip).to( | |
device | |
) # shape: torch.Size([1, 257, 1280]) mean: 0.06, std: 0.53, min: -6.83, max: 11.12 | |
ip_ = ip_embed.repeat(batch_size, 1, 1) | |
c_["ip"] = ip_ | |
uc_["ip"] = torch.zeros_like(ip_) | |
if pixel_control: | |
assert camera is not None | |
ip = transform(ip).to( | |
device | |
) # shape: torch.Size([3, 256, 256]) mean: 0.33, std: 0.37, min: -1.00, max: 1.00 | |
ip_img = model.get_first_stage_encoding( | |
model.encode_first_stage(ip[None, :, :, :]) | |
) # shape: torch.Size([1, 4, 32, 32]) mean: 0.23, std: 0.77, min: -4.42, max: 3.55 | |
c_["ip_img"] = ip_img | |
uc_["ip_img"] = torch.zeros_like(ip_img) | |
shape = [4, image_size // 8, image_size // 8] # [4, 32, 32] | |
if offset_noise: | |
ref = transform(ip_raw).to(device) | |
ref_latent = model.get_first_stage_encoding(model.encode_first_stage(ref[None, :, :, :])) | |
ref_mean = ref_latent.mean(dim=(-1, -2), keepdim=True) | |
time_steps = torch.randint(model.num_timesteps - 1, model.num_timesteps, (batch_size,), device=device) | |
x_T = model.q_sample(torch.ones([batch_size] + shape, device=device) * ref_mean, time_steps) | |
samples_ddim, _ = ( | |
sampler.sample( # shape: torch.Size([5, 4, 32, 32]) mean: 0.29, std: 0.85, min: -3.38, max: 4.43 | |
S=step, | |
conditioning=c_, | |
batch_size=batch_size, | |
shape=shape, | |
verbose=False, | |
unconditional_guidance_scale=scale, | |
unconditional_conditioning=uc_, | |
eta=ddim_eta, | |
x_T=x_T if offset_noise else None, | |
) | |
) | |
x_sample = model.decode_first_stage(samples_ddim) | |
x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0) | |
x_sample = 255.0 * x_sample.permute(0, 2, 3, 1).cpu().numpy() | |
return list(x_sample.astype(np.uint8)) | |
def diffuse(self, t, ip, n_test=2): | |
set_seed(self.seed) | |
ip = do_resize_content(ip, self.resize_rate) | |
if self.random_background: | |
ip = add_random_background(ip) | |
images = [] | |
for _ in range(n_test): | |
img = self.i2i( | |
self.model, | |
self.size, | |
t, | |
self.uc, | |
self.sampler, | |
ip=ip, | |
step=50, | |
scale=5, | |
batch_size=self.batch_size, | |
ddim_eta=0.0, | |
dtype=self.dtype, | |
device=self.device, | |
camera=self.camera, | |
num_frames=self.num_frames, | |
pixel_control=(self.mode == "pixel"), | |
transform=self.image_transform, | |
offset_noise=self.offset_noise, | |
) | |
img = np.concatenate(img, 1) | |
img = np.concatenate((img, ip.resize((self.size, self.size))), axis=1) | |
images.append(img) | |
set_seed() # unset random and numpy seed | |
return images | |
class ImageDreamDiffusionStage2: | |
def __init__( | |
self, | |
model, | |
device, | |
dtype, | |
num_frames, | |
camera_views, | |
ref_position, | |
random_background=False, | |
offset_noise=False, | |
resize_rate=1, | |
mode="pixel", | |
image_size=256, | |
seed=1234, | |
) -> None: | |
assert mode in ["pixel", "local"] | |
size = image_size | |
self.seed = seed | |
batch_size = max(4, num_frames) | |
neg_texts = "uniform low no texture ugly, boring, bad anatomy, blurry, pixelated, obscure, unnatural colors, poor lighting, dull, and unclear." | |
uc = model.get_learned_conditioning([neg_texts]).to(device) | |
sampler = DDIMSampler(model) | |
# pre-compute camera matrices | |
camera = [get_camera_for_index(i).squeeze() for i in camera_views] | |
if ref_position is not None: | |
camera[ref_position] = torch.zeros_like(camera[ref_position]) # set ref camera to zero | |
camera = torch.stack(camera) | |
camera = camera.repeat(batch_size // num_frames, 1).to(device) | |
self.image_transform = T.Compose( | |
[ | |
T.Resize((size, size)), | |
T.ToTensor(), | |
T.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), | |
] | |
) | |
self.dtype = dtype | |
self.mode = mode | |
self.ref_position = ref_position | |
self.random_background = random_background | |
self.resize_rate = resize_rate | |
self.num_frames = num_frames | |
self.size = size | |
self.device = device | |
self.batch_size = batch_size | |
self.model = model | |
self.sampler = sampler | |
self.uc = uc | |
self.camera = camera | |
self.offset_noise = offset_noise | |
def i2iStage2( | |
model, | |
image_size, | |
prompt, | |
uc, | |
sampler, | |
pixel_images, | |
ip=None, | |
step=20, | |
scale=5.0, | |
batch_size=8, | |
ddim_eta=0.0, | |
dtype=torch.float32, | |
device="cuda", | |
camera=None, | |
num_frames=4, | |
pixel_control=False, | |
transform=None, | |
offset_noise=False, | |
): | |
ip_raw = ip | |
if type(prompt) != list: | |
prompt = [prompt] | |
with torch.no_grad(), torch.autocast(device_type=torch.device(device).type, dtype=dtype): | |
c = model.get_learned_conditioning(prompt).to( | |
device | |
) # shape: torch.Size([1, 77, 1024]) mean: -0.17, std: 1.02, min: -7.50, max: 13.05 | |
c_ = {"context": c.repeat(batch_size, 1, 1)} # batch_size | |
uc_ = {"context": uc.repeat(batch_size, 1, 1)} | |
if camera is not None: | |
c_["camera"] = uc_["camera"] = ( | |
camera # shape: torch.Size([5, 16]) mean: 0.11, std: 0.49, min: -1.00, max: 1.00 | |
) | |
c_["num_frames"] = uc_["num_frames"] = num_frames | |
if ip is not None: | |
ip_embed = model.get_learned_image_conditioning(ip).to( | |
device | |
) # shape: torch.Size([1, 257, 1280]) mean: 0.06, std: 0.53, min: -6.83, max: 11.12 | |
ip_ = ip_embed.repeat(batch_size, 1, 1) | |
c_["ip"] = ip_ | |
uc_["ip"] = torch.zeros_like(ip_) | |
if pixel_control: | |
assert camera is not None | |
transed_pixel_images = torch.stack([transform(i).to(device) for i in pixel_images]) | |
latent_pixel_images = model.get_first_stage_encoding(model.encode_first_stage(transed_pixel_images)) | |
c_["pixel_images"] = latent_pixel_images | |
uc_["pixel_images"] = torch.zeros_like(latent_pixel_images) | |
shape = [4, image_size // 8, image_size // 8] # [4, 32, 32] | |
if offset_noise: | |
ref = transform(ip_raw).to(device) | |
ref_latent = model.get_first_stage_encoding(model.encode_first_stage(ref[None, :, :, :])) | |
ref_mean = ref_latent.mean(dim=(-1, -2), keepdim=True) | |
time_steps = torch.randint(model.num_timesteps - 1, model.num_timesteps, (batch_size,), device=device) | |
x_T = model.q_sample(torch.ones([batch_size] + shape, device=device) * ref_mean, time_steps) | |
samples_ddim, _ = ( | |
sampler.sample( # shape: torch.Size([5, 4, 32, 32]) mean: 0.29, std: 0.85, min: -3.38, max: 4.43 | |
S=step, | |
conditioning=c_, | |
batch_size=batch_size, | |
shape=shape, | |
verbose=False, | |
unconditional_guidance_scale=scale, | |
unconditional_conditioning=uc_, | |
eta=ddim_eta, | |
x_T=x_T if offset_noise else None, | |
) | |
) | |
x_sample = model.decode_first_stage(samples_ddim) | |
x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0) | |
x_sample = 255.0 * x_sample.permute(0, 2, 3, 1).cpu().numpy() | |
return list(x_sample.astype(np.uint8)) | |
def diffuse(self, t, ip, pixel_images, n_test=2): | |
set_seed(self.seed) | |
ip = do_resize_content(ip, self.resize_rate) | |
pixel_images = [do_resize_content(i, self.resize_rate) for i in pixel_images] | |
if self.random_background: | |
bg_color = np.random.rand() * 255 | |
ip = add_random_background(ip, bg_color) | |
pixel_images = [add_random_background(i, bg_color) for i in pixel_images] | |
images = [] | |
for _ in range(n_test): | |
img = self.i2iStage2( | |
self.model, | |
self.size, | |
t, | |
self.uc, | |
self.sampler, | |
pixel_images=pixel_images, | |
ip=ip, | |
step=50, | |
scale=5, | |
batch_size=self.batch_size, | |
ddim_eta=0.0, | |
dtype=self.dtype, | |
device=self.device, | |
camera=self.camera, | |
num_frames=self.num_frames, | |
pixel_control=(self.mode == "pixel"), | |
transform=self.image_transform, | |
offset_noise=self.offset_noise, | |
) | |
img = np.concatenate(img, 1) | |
img = np.concatenate( | |
(img, ip.resize((self.size, self.size)), *[i.resize((self.size, self.size)) for i in pixel_images]), | |
axis=1, | |
) | |
images.append(img) | |
set_seed() # unset random and numpy seed | |
return images | |