Spaces:
Runtime error
Runtime error
# pytorch_diffusion + derived encoder decoder | |
import math | |
import torch | |
import torch.nn as nn | |
import numpy as np | |
from einops import rearrange | |
from typing import Optional, Any | |
from ..attention import MemoryEfficientCrossAttention | |
try: | |
import xformers | |
import xformers.ops | |
XFORMERS_IS_AVAILBLE = True | |
except: | |
XFORMERS_IS_AVAILBLE = False | |
print("No module 'xformers'. Proceeding without it.") | |
def get_timestep_embedding(timesteps, embedding_dim): | |
""" | |
This matches the implementation in Denoising Diffusion Probabilistic Models: | |
From Fairseq. | |
Build sinusoidal embeddings. | |
This matches the implementation in tensor2tensor, but differs slightly | |
from the description in Section 3.5 of "Attention Is All You Need". | |
""" | |
assert len(timesteps.shape) == 1 | |
half_dim = embedding_dim // 2 | |
emb = math.log(10000) / (half_dim - 1) | |
emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb) | |
emb = emb.to(device=timesteps.device) | |
emb = timesteps.float()[:, None] * emb[None, :] | |
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) | |
if embedding_dim % 2 == 1: # zero pad | |
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0)) | |
return emb | |
def nonlinearity(x): | |
# swish | |
return x * torch.sigmoid(x) | |
def Normalize(in_channels, num_groups=32): | |
return torch.nn.GroupNorm( | |
num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True | |
) | |
class Upsample(nn.Module): | |
def __init__(self, in_channels, with_conv): | |
super().__init__() | |
self.with_conv = with_conv | |
if self.with_conv: | |
self.conv = torch.nn.Conv2d( | |
in_channels, in_channels, kernel_size=3, stride=1, padding=1 | |
) | |
def forward(self, x): | |
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") | |
if self.with_conv: | |
x = self.conv(x) | |
return x | |
class Downsample(nn.Module): | |
def __init__(self, in_channels, with_conv): | |
super().__init__() | |
self.with_conv = with_conv | |
if self.with_conv: | |
# no asymmetric padding in torch conv, must do it ourselves | |
self.conv = torch.nn.Conv2d( | |
in_channels, in_channels, kernel_size=3, stride=2, padding=0 | |
) | |
def forward(self, x): | |
if self.with_conv: | |
pad = (0, 1, 0, 1) | |
x = torch.nn.functional.pad(x, pad, mode="constant", value=0) | |
x = self.conv(x) | |
else: | |
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2) | |
return x | |
class ResnetBlock(nn.Module): | |
def __init__( | |
self, | |
*, | |
in_channels, | |
out_channels=None, | |
conv_shortcut=False, | |
dropout, | |
temb_channels=512, | |
): | |
super().__init__() | |
self.in_channels = in_channels | |
out_channels = in_channels if out_channels is None else out_channels | |
self.out_channels = out_channels | |
self.use_conv_shortcut = conv_shortcut | |
self.norm1 = Normalize(in_channels) | |
self.conv1 = torch.nn.Conv2d( | |
in_channels, out_channels, kernel_size=3, stride=1, padding=1 | |
) | |
if temb_channels > 0: | |
self.temb_proj = torch.nn.Linear(temb_channels, out_channels) | |
self.norm2 = Normalize(out_channels) | |
self.dropout = torch.nn.Dropout(dropout) | |
self.conv2 = torch.nn.Conv2d( | |
out_channels, out_channels, kernel_size=3, stride=1, padding=1 | |
) | |
if self.in_channels != self.out_channels: | |
if self.use_conv_shortcut: | |
self.conv_shortcut = torch.nn.Conv2d( | |
in_channels, out_channels, kernel_size=3, stride=1, padding=1 | |
) | |
else: | |
self.nin_shortcut = torch.nn.Conv2d( | |
in_channels, out_channels, kernel_size=1, stride=1, padding=0 | |
) | |
def forward(self, x, temb): | |
h = x | |
h = self.norm1(h) | |
h = nonlinearity(h) | |
h = self.conv1(h) | |
if temb is not None: | |
h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None] | |
h = self.norm2(h) | |
h = nonlinearity(h) | |
h = self.dropout(h) | |
h = self.conv2(h) | |
if self.in_channels != self.out_channels: | |
if self.use_conv_shortcut: | |
x = self.conv_shortcut(x) | |
else: | |
x = self.nin_shortcut(x) | |
return x + h | |
class AttnBlock(nn.Module): | |
def __init__(self, in_channels): | |
super().__init__() | |
self.in_channels = in_channels | |
self.norm = Normalize(in_channels) | |
self.q = torch.nn.Conv2d( | |
in_channels, in_channels, kernel_size=1, stride=1, padding=0 | |
) | |
self.k = torch.nn.Conv2d( | |
in_channels, in_channels, kernel_size=1, stride=1, padding=0 | |
) | |
self.v = torch.nn.Conv2d( | |
in_channels, in_channels, kernel_size=1, stride=1, padding=0 | |
) | |
self.proj_out = torch.nn.Conv2d( | |
in_channels, in_channels, kernel_size=1, stride=1, padding=0 | |
) | |
def forward(self, x): | |
h_ = x | |
h_ = self.norm(h_) | |
q = self.q(h_) | |
k = self.k(h_) | |
v = self.v(h_) | |
# compute attention | |
b, c, h, w = q.shape | |
q = q.reshape(b, c, h * w) | |
q = q.permute(0, 2, 1) # b,hw,c | |
k = k.reshape(b, c, h * w) # b,c,hw | |
w_ = torch.bmm(q, k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j] | |
w_ = w_ * (int(c) ** (-0.5)) | |
w_ = torch.nn.functional.softmax(w_, dim=2) | |
# attend to values | |
v = v.reshape(b, c, h * w) | |
w_ = w_.permute(0, 2, 1) # b,hw,hw (first hw of k, second of q) | |
h_ = torch.bmm(v, w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j] | |
h_ = h_.reshape(b, c, h, w) | |
h_ = self.proj_out(h_) | |
return x + h_ | |
class MemoryEfficientAttnBlock(nn.Module): | |
""" | |
Uses xformers efficient implementation, | |
see https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223 | |
Note: this is a single-head self-attention operation | |
""" | |
# | |
def __init__(self, in_channels): | |
super().__init__() | |
self.in_channels = in_channels | |
self.norm = Normalize(in_channels) | |
self.q = torch.nn.Conv2d( | |
in_channels, in_channels, kernel_size=1, stride=1, padding=0 | |
) | |
self.k = torch.nn.Conv2d( | |
in_channels, in_channels, kernel_size=1, stride=1, padding=0 | |
) | |
self.v = torch.nn.Conv2d( | |
in_channels, in_channels, kernel_size=1, stride=1, padding=0 | |
) | |
self.proj_out = torch.nn.Conv2d( | |
in_channels, in_channels, kernel_size=1, stride=1, padding=0 | |
) | |
self.attention_op: Optional[Any] = None | |
def forward(self, x): | |
# h_ = x | |
# h_ = self.norm(h_) | |
# q = self.q(h_) | |
# k = self.k(h_) | |
# v = self.v(h_) | |
# # compute attention | |
# B, C, H, W = q.shape | |
# q, k, v = map(lambda x: rearrange(x, "b c h w -> b (h w) c"), (q, k, v)) | |
# q, k, v = map( | |
# lambda t: t.unsqueeze(3) | |
# .reshape(B, t.shape[1], 1, C) | |
# .permute(0, 2, 1, 3) | |
# .reshape(B * 1, t.shape[1], C) | |
# .contiguous(), | |
# (q, k, v), | |
# ) | |
# out = xformers.ops.memory_efficient_attention( | |
# q, k, v, attn_bias=None, op=self.attention_op | |
# ) | |
# out = ( | |
# out.unsqueeze(0) | |
# .reshape(B, 1, out.shape[1], C) | |
# .permute(0, 2, 1, 3) | |
# .reshape(B, out.shape[1], C) | |
# ) | |
# out = rearrange(out, "b (h w) c -> b c h w", b=B, h=H, w=W, c=C) | |
# out = self.proj_out(out) | |
# return x + out | |
h_ = x | |
h_ = self.norm(h_) | |
q = self.q(h_) | |
k = self.k(h_) | |
v = self.v(h_) | |
# Compute attention | |
B, C, H, W = q.shape | |
q, k, v = map(lambda t: rearrange(t, "b c h w -> b (h w) c"), (q, k, v)) | |
if torch.cuda.is_available(): # Use xformers only if GPU is available | |
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op) | |
else: | |
# CPU-friendly alternative for attention | |
attn_weights = torch.einsum('bqc,bkc->bqk', q, k) # Simple dot-product attention | |
attn_weights = torch.softmax(attn_weights, dim=-1) | |
out = torch.einsum('bqk,bvc->bqc', attn_weights, v) | |
out = rearrange(out, "b (h w) c -> b c h w", h=H, w=W) | |
out = self.proj_out(out) | |
return x + out | |
class MemoryEfficientCrossAttentionWrapper(MemoryEfficientCrossAttention): | |
def forward(self, x, context=None, mask=None): | |
b, c, h, w = x.shape | |
x = rearrange(x, "b c h w -> b (h w) c") | |
out = super().forward(x, context=context, mask=mask) | |
out = rearrange(out, "b (h w) c -> b c h w", h=h, w=w, c=c) | |
return x + out | |
def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None): | |
# assert attn_type in [ | |
# "vanilla", | |
# "vanilla-xformers", | |
# "memory-efficient-cross-attn", | |
# "linear", | |
# "none", | |
# ], f"attn_type {attn_type} unknown" | |
# if XFORMERS_IS_AVAILBLE and attn_type == "vanilla": | |
# attn_type = "vanilla-xformers" | |
# print(f"making attention of type '{attn_type}' with {in_channels} in_channels") | |
# if attn_type == "vanilla": | |
# assert attn_kwargs is None | |
# return AttnBlock(in_channels) | |
# elif attn_type == "vanilla-xformers": | |
# print(f"building MemoryEfficientAttnBlock with {in_channels} in_channels...") | |
# return MemoryEfficientAttnBlock(in_channels) | |
# elif type == "memory-efficient-cross-attn": | |
# attn_kwargs["query_dim"] = in_channels | |
# return MemoryEfficientCrossAttentionWrapper(**attn_kwargs) | |
# elif attn_type == "none": | |
# return nn.Identity(in_channels) | |
# else: | |
# raise NotImplementedError() | |
assert attn_type in [ | |
"vanilla", | |
"vanilla-xformers", | |
"memory-efficient-cross-attn", | |
"linear", | |
"none", | |
], f"attn_type {attn_type} unknown" | |
# Comprobar si GPU está disponible y evitar xformers si no lo está | |
if torch.cuda.is_available() and XFORMERS_IS_AVAILBLE and attn_type == "vanilla": | |
attn_type = "vanilla-xformers" | |
else: | |
print("Using CPU-based attention as xformers or GPU is not available.") | |
print(f"making attention of type '{attn_type}' with {in_channels} in_channels") | |
if attn_type == "vanilla": | |
assert attn_kwargs is None | |
return AttnBlock(in_channels) # Atención estándar para CPU | |
elif attn_type == "vanilla-xformers": | |
print(f"building MemoryEfficientAttnBlock with {in_channels} in_channels...") | |
return MemoryEfficientAttnBlock(in_channels) # Atención optimizada con xformers | |
elif attn_type == "memory-efficient-cross-attn": | |
attn_kwargs["query_dim"] = in_channels | |
return MemoryEfficientCrossAttentionWrapper(**attn_kwargs) | |
elif attn_type == "none": | |
return nn.Identity(in_channels) | |
else: | |
raise NotImplementedError() | |
class Model(nn.Module): | |
def __init__( | |
self, | |
*, | |
ch, | |
out_ch, | |
ch_mult=(1, 2, 4, 8), | |
num_res_blocks, | |
attn_resolutions, | |
dropout=0.0, | |
resamp_with_conv=True, | |
in_channels, | |
resolution, | |
use_timestep=True, | |
use_linear_attn=False, | |
attn_type="vanilla", | |
): | |
super().__init__() | |
if use_linear_attn: | |
attn_type = "linear" | |
self.ch = ch | |
self.temb_ch = self.ch * 4 | |
self.num_resolutions = len(ch_mult) | |
self.num_res_blocks = num_res_blocks | |
self.resolution = resolution | |
self.in_channels = in_channels | |
self.use_timestep = use_timestep | |
if self.use_timestep: | |
# timestep embedding | |
self.temb = nn.Module() | |
self.temb.dense = nn.ModuleList( | |
[ | |
torch.nn.Linear(self.ch, self.temb_ch), | |
torch.nn.Linear(self.temb_ch, self.temb_ch), | |
] | |
) | |
# downsampling | |
self.conv_in = torch.nn.Conv2d( | |
in_channels, self.ch, kernel_size=3, stride=1, padding=1 | |
) | |
curr_res = resolution | |
in_ch_mult = (1,) + tuple(ch_mult) | |
self.down = nn.ModuleList() | |
for i_level in range(self.num_resolutions): | |
block = nn.ModuleList() | |
attn = nn.ModuleList() | |
block_in = ch * in_ch_mult[i_level] | |
block_out = ch * ch_mult[i_level] | |
for i_block in range(self.num_res_blocks): | |
block.append( | |
ResnetBlock( | |
in_channels=block_in, | |
out_channels=block_out, | |
temb_channels=self.temb_ch, | |
dropout=dropout, | |
) | |
) | |
block_in = block_out | |
if curr_res in attn_resolutions: | |
attn.append(make_attn(block_in, attn_type=attn_type)) | |
down = nn.Module() | |
down.block = block | |
down.attn = attn | |
if i_level != self.num_resolutions - 1: | |
down.downsample = Downsample(block_in, resamp_with_conv) | |
curr_res = curr_res // 2 | |
self.down.append(down) | |
# middle | |
self.mid = nn.Module() | |
self.mid.block_1 = ResnetBlock( | |
in_channels=block_in, | |
out_channels=block_in, | |
temb_channels=self.temb_ch, | |
dropout=dropout, | |
) | |
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) | |
self.mid.block_2 = ResnetBlock( | |
in_channels=block_in, | |
out_channels=block_in, | |
temb_channels=self.temb_ch, | |
dropout=dropout, | |
) | |
# upsampling | |
self.up = nn.ModuleList() | |
for i_level in reversed(range(self.num_resolutions)): | |
block = nn.ModuleList() | |
attn = nn.ModuleList() | |
block_out = ch * ch_mult[i_level] | |
skip_in = ch * ch_mult[i_level] | |
for i_block in range(self.num_res_blocks + 1): | |
if i_block == self.num_res_blocks: | |
skip_in = ch * in_ch_mult[i_level] | |
block.append( | |
ResnetBlock( | |
in_channels=block_in + skip_in, | |
out_channels=block_out, | |
temb_channels=self.temb_ch, | |
dropout=dropout, | |
) | |
) | |
block_in = block_out | |
if curr_res in attn_resolutions: | |
attn.append(make_attn(block_in, attn_type=attn_type)) | |
up = nn.Module() | |
up.block = block | |
up.attn = attn | |
if i_level != 0: | |
up.upsample = Upsample(block_in, resamp_with_conv) | |
curr_res = curr_res * 2 | |
self.up.insert(0, up) # prepend to get consistent order | |
# end | |
self.norm_out = Normalize(block_in) | |
self.conv_out = torch.nn.Conv2d( | |
block_in, out_ch, kernel_size=3, stride=1, padding=1 | |
) | |
def forward(self, x, t=None, context=None): | |
# assert x.shape[2] == x.shape[3] == self.resolution | |
if context is not None: | |
# assume aligned context, cat along channel axis | |
x = torch.cat((x, context), dim=1) | |
if self.use_timestep: | |
# timestep embedding | |
assert t is not None | |
temb = get_timestep_embedding(t, self.ch) | |
temb = self.temb.dense[0](temb) | |
temb = nonlinearity(temb) | |
temb = self.temb.dense[1](temb) | |
else: | |
temb = None | |
# downsampling | |
hs = [self.conv_in(x)] | |
for i_level in range(self.num_resolutions): | |
for i_block in range(self.num_res_blocks): | |
h = self.down[i_level].block[i_block](hs[-1], temb) | |
if len(self.down[i_level].attn) > 0: | |
h = self.down[i_level].attn[i_block](h) | |
hs.append(h) | |
if i_level != self.num_resolutions - 1: | |
hs.append(self.down[i_level].downsample(hs[-1])) | |
# middle | |
h = hs[-1] | |
h = self.mid.block_1(h, temb) | |
h = self.mid.attn_1(h) | |
h = self.mid.block_2(h, temb) | |
# upsampling | |
for i_level in reversed(range(self.num_resolutions)): | |
for i_block in range(self.num_res_blocks + 1): | |
h = self.up[i_level].block[i_block]( | |
torch.cat([h, hs.pop()], dim=1), temb | |
) | |
if len(self.up[i_level].attn) > 0: | |
h = self.up[i_level].attn[i_block](h) | |
if i_level != 0: | |
h = self.up[i_level].upsample(h) | |
# end | |
h = self.norm_out(h) | |
h = nonlinearity(h) | |
h = self.conv_out(h) | |
return h | |
def get_last_layer(self): | |
return self.conv_out.weight | |
class Encoder(nn.Module): | |
def __init__( | |
self, | |
*, | |
ch, | |
out_ch, | |
ch_mult=(1, 2, 4, 8), | |
num_res_blocks, | |
attn_resolutions, | |
dropout=0.0, | |
resamp_with_conv=True, | |
in_channels, | |
resolution, | |
z_channels, | |
double_z=True, | |
use_linear_attn=False, | |
attn_type="vanilla", | |
**ignore_kwargs, | |
): | |
super().__init__() | |
if use_linear_attn: | |
attn_type = "linear" | |
self.ch = ch | |
self.temb_ch = 0 | |
self.num_resolutions = len(ch_mult) | |
self.num_res_blocks = num_res_blocks | |
self.resolution = resolution | |
self.in_channels = in_channels | |
# downsampling | |
self.conv_in = torch.nn.Conv2d( | |
in_channels, self.ch, kernel_size=3, stride=1, padding=1 | |
) | |
curr_res = resolution | |
in_ch_mult = (1,) + tuple(ch_mult) | |
self.in_ch_mult = in_ch_mult | |
self.down = nn.ModuleList() | |
for i_level in range(self.num_resolutions): | |
block = nn.ModuleList() | |
attn = nn.ModuleList() | |
block_in = ch * in_ch_mult[i_level] | |
block_out = ch * ch_mult[i_level] | |
for i_block in range(self.num_res_blocks): | |
block.append( | |
ResnetBlock( | |
in_channels=block_in, | |
out_channels=block_out, | |
temb_channels=self.temb_ch, | |
dropout=dropout, | |
) | |
) | |
block_in = block_out | |
if curr_res in attn_resolutions: | |
attn.append(make_attn(block_in, attn_type=attn_type)) | |
down = nn.Module() | |
down.block = block | |
down.attn = attn | |
if i_level != self.num_resolutions - 1: | |
down.downsample = Downsample(block_in, resamp_with_conv) | |
curr_res = curr_res // 2 | |
self.down.append(down) | |
# middle | |
self.mid = nn.Module() | |
self.mid.block_1 = ResnetBlock( | |
in_channels=block_in, | |
out_channels=block_in, | |
temb_channels=self.temb_ch, | |
dropout=dropout, | |
) | |
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) | |
self.mid.block_2 = ResnetBlock( | |
in_channels=block_in, | |
out_channels=block_in, | |
temb_channels=self.temb_ch, | |
dropout=dropout, | |
) | |
# end | |
self.norm_out = Normalize(block_in) | |
self.conv_out = torch.nn.Conv2d( | |
block_in, | |
2 * z_channels if double_z else z_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
) | |
def forward(self, x): | |
# timestep embedding | |
temb = None | |
# downsampling | |
hs = [self.conv_in(x)] | |
for i_level in range(self.num_resolutions): | |
for i_block in range(self.num_res_blocks): | |
h = self.down[i_level].block[i_block](hs[-1], temb) | |
if len(self.down[i_level].attn) > 0: | |
h = self.down[i_level].attn[i_block](h) | |
hs.append(h) | |
if i_level != self.num_resolutions - 1: | |
hs.append(self.down[i_level].downsample(hs[-1])) | |
# middle | |
h = hs[-1] | |
h = self.mid.block_1(h, temb) | |
h = self.mid.attn_1(h) | |
h = self.mid.block_2(h, temb) | |
# end | |
h = self.norm_out(h) | |
h = nonlinearity(h) | |
h = self.conv_out(h) | |
return h | |
class Decoder(nn.Module): | |
def __init__( | |
self, | |
*, | |
ch, | |
out_ch, | |
ch_mult=(1, 2, 4, 8), | |
num_res_blocks, | |
attn_resolutions, | |
dropout=0.0, | |
resamp_with_conv=True, | |
in_channels, | |
resolution, | |
z_channels, | |
give_pre_end=False, | |
tanh_out=False, | |
use_linear_attn=False, | |
attn_type="vanilla", | |
**ignorekwargs, | |
): | |
super().__init__() | |
if use_linear_attn: | |
attn_type = "linear" | |
self.ch = ch | |
self.temb_ch = 0 | |
self.num_resolutions = len(ch_mult) | |
self.num_res_blocks = num_res_blocks | |
self.resolution = resolution | |
self.in_channels = in_channels | |
self.give_pre_end = give_pre_end | |
self.tanh_out = tanh_out | |
# compute in_ch_mult, block_in and curr_res at lowest res | |
in_ch_mult = (1,) + tuple(ch_mult) | |
block_in = ch * ch_mult[self.num_resolutions - 1] | |
curr_res = resolution // 2 ** (self.num_resolutions - 1) | |
self.z_shape = (1, z_channels, curr_res, curr_res) | |
print( | |
"Working with z of shape {} = {} dimensions.".format( | |
self.z_shape, np.prod(self.z_shape) | |
) | |
) | |
# z to block_in | |
self.conv_in = torch.nn.Conv2d( | |
z_channels, block_in, kernel_size=3, stride=1, padding=1 | |
) | |
# middle | |
self.mid = nn.Module() | |
self.mid.block_1 = ResnetBlock( | |
in_channels=block_in, | |
out_channels=block_in, | |
temb_channels=self.temb_ch, | |
dropout=dropout, | |
) | |
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) | |
self.mid.block_2 = ResnetBlock( | |
in_channels=block_in, | |
out_channels=block_in, | |
temb_channels=self.temb_ch, | |
dropout=dropout, | |
) | |
# upsampling | |
self.up = nn.ModuleList() | |
for i_level in reversed(range(self.num_resolutions)): | |
block = nn.ModuleList() | |
attn = nn.ModuleList() | |
block_out = ch * ch_mult[i_level] | |
for i_block in range(self.num_res_blocks + 1): | |
block.append( | |
ResnetBlock( | |
in_channels=block_in, | |
out_channels=block_out, | |
temb_channels=self.temb_ch, | |
dropout=dropout, | |
) | |
) | |
block_in = block_out | |
if curr_res in attn_resolutions: | |
attn.append(make_attn(block_in, attn_type=attn_type)) | |
up = nn.Module() | |
up.block = block | |
up.attn = attn | |
if i_level != 0: | |
up.upsample = Upsample(block_in, resamp_with_conv) | |
curr_res = curr_res * 2 | |
self.up.insert(0, up) # prepend to get consistent order | |
# end | |
self.norm_out = Normalize(block_in) | |
self.conv_out = torch.nn.Conv2d( | |
block_in, out_ch, kernel_size=3, stride=1, padding=1 | |
) | |
def forward(self, z): | |
# assert z.shape[1:] == self.z_shape[1:] | |
self.last_z_shape = z.shape | |
# timestep embedding | |
temb = None | |
# z to block_in | |
h = self.conv_in(z) | |
# middle | |
h = self.mid.block_1(h, temb) | |
h = self.mid.attn_1(h) | |
h = self.mid.block_2(h, temb) | |
# upsampling | |
for i_level in reversed(range(self.num_resolutions)): | |
for i_block in range(self.num_res_blocks + 1): | |
h = self.up[i_level].block[i_block](h, temb) | |
if len(self.up[i_level].attn) > 0: | |
h = self.up[i_level].attn[i_block](h) | |
if i_level != 0: | |
h = self.up[i_level].upsample(h) | |
# end | |
if self.give_pre_end: | |
return h | |
h = self.norm_out(h) | |
h = nonlinearity(h) | |
h = self.conv_out(h) | |
if self.tanh_out: | |
h = torch.tanh(h) | |
return h | |
class SimpleDecoder(nn.Module): | |
def __init__(self, in_channels, out_channels, *args, **kwargs): | |
super().__init__() | |
self.model = nn.ModuleList( | |
[ | |
nn.Conv2d(in_channels, in_channels, 1), | |
ResnetBlock( | |
in_channels=in_channels, | |
out_channels=2 * in_channels, | |
temb_channels=0, | |
dropout=0.0, | |
), | |
ResnetBlock( | |
in_channels=2 * in_channels, | |
out_channels=4 * in_channels, | |
temb_channels=0, | |
dropout=0.0, | |
), | |
ResnetBlock( | |
in_channels=4 * in_channels, | |
out_channels=2 * in_channels, | |
temb_channels=0, | |
dropout=0.0, | |
), | |
nn.Conv2d(2 * in_channels, in_channels, 1), | |
Upsample(in_channels, with_conv=True), | |
] | |
) | |
# end | |
self.norm_out = Normalize(in_channels) | |
self.conv_out = torch.nn.Conv2d( | |
in_channels, out_channels, kernel_size=3, stride=1, padding=1 | |
) | |
def forward(self, x): | |
for i, layer in enumerate(self.model): | |
if i in [1, 2, 3]: | |
x = layer(x, None) | |
else: | |
x = layer(x) | |
h = self.norm_out(x) | |
h = nonlinearity(h) | |
x = self.conv_out(h) | |
return x | |
class UpsampleDecoder(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
ch, | |
num_res_blocks, | |
resolution, | |
ch_mult=(2, 2), | |
dropout=0.0, | |
): | |
super().__init__() | |
# upsampling | |
self.temb_ch = 0 | |
self.num_resolutions = len(ch_mult) | |
self.num_res_blocks = num_res_blocks | |
block_in = in_channels | |
curr_res = resolution // 2 ** (self.num_resolutions - 1) | |
self.res_blocks = nn.ModuleList() | |
self.upsample_blocks = nn.ModuleList() | |
for i_level in range(self.num_resolutions): | |
res_block = [] | |
block_out = ch * ch_mult[i_level] | |
for i_block in range(self.num_res_blocks + 1): | |
res_block.append( | |
ResnetBlock( | |
in_channels=block_in, | |
out_channels=block_out, | |
temb_channels=self.temb_ch, | |
dropout=dropout, | |
) | |
) | |
block_in = block_out | |
self.res_blocks.append(nn.ModuleList(res_block)) | |
if i_level != self.num_resolutions - 1: | |
self.upsample_blocks.append(Upsample(block_in, True)) | |
curr_res = curr_res * 2 | |
# end | |
self.norm_out = Normalize(block_in) | |
self.conv_out = torch.nn.Conv2d( | |
block_in, out_channels, kernel_size=3, stride=1, padding=1 | |
) | |
def forward(self, x): | |
# upsampling | |
h = x | |
for k, i_level in enumerate(range(self.num_resolutions)): | |
for i_block in range(self.num_res_blocks + 1): | |
h = self.res_blocks[i_level][i_block](h, None) | |
if i_level != self.num_resolutions - 1: | |
h = self.upsample_blocks[k](h) | |
h = self.norm_out(h) | |
h = nonlinearity(h) | |
h = self.conv_out(h) | |
return h | |
class LatentRescaler(nn.Module): | |
def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2): | |
super().__init__() | |
# residual block, interpolate, residual block | |
self.factor = factor | |
self.conv_in = nn.Conv2d( | |
in_channels, mid_channels, kernel_size=3, stride=1, padding=1 | |
) | |
self.res_block1 = nn.ModuleList( | |
[ | |
ResnetBlock( | |
in_channels=mid_channels, | |
out_channels=mid_channels, | |
temb_channels=0, | |
dropout=0.0, | |
) | |
for _ in range(depth) | |
] | |
) | |
self.attn = AttnBlock(mid_channels) | |
self.res_block2 = nn.ModuleList( | |
[ | |
ResnetBlock( | |
in_channels=mid_channels, | |
out_channels=mid_channels, | |
temb_channels=0, | |
dropout=0.0, | |
) | |
for _ in range(depth) | |
] | |
) | |
self.conv_out = nn.Conv2d( | |
mid_channels, | |
out_channels, | |
kernel_size=1, | |
) | |
def forward(self, x): | |
x = self.conv_in(x) | |
for block in self.res_block1: | |
x = block(x, None) | |
x = torch.nn.functional.interpolate( | |
x, | |
size=( | |
int(round(x.shape[2] * self.factor)), | |
int(round(x.shape[3] * self.factor)), | |
), | |
) | |
x = self.attn(x) | |
for block in self.res_block2: | |
x = block(x, None) | |
x = self.conv_out(x) | |
return x | |
class MergedRescaleEncoder(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
ch, | |
resolution, | |
out_ch, | |
num_res_blocks, | |
attn_resolutions, | |
dropout=0.0, | |
resamp_with_conv=True, | |
ch_mult=(1, 2, 4, 8), | |
rescale_factor=1.0, | |
rescale_module_depth=1, | |
): | |
super().__init__() | |
intermediate_chn = ch * ch_mult[-1] | |
self.encoder = Encoder( | |
in_channels=in_channels, | |
num_res_blocks=num_res_blocks, | |
ch=ch, | |
ch_mult=ch_mult, | |
z_channels=intermediate_chn, | |
double_z=False, | |
resolution=resolution, | |
attn_resolutions=attn_resolutions, | |
dropout=dropout, | |
resamp_with_conv=resamp_with_conv, | |
out_ch=None, | |
) | |
self.rescaler = LatentRescaler( | |
factor=rescale_factor, | |
in_channels=intermediate_chn, | |
mid_channels=intermediate_chn, | |
out_channels=out_ch, | |
depth=rescale_module_depth, | |
) | |
def forward(self, x): | |
x = self.encoder(x) | |
x = self.rescaler(x) | |
return x | |
class MergedRescaleDecoder(nn.Module): | |
def __init__( | |
self, | |
z_channels, | |
out_ch, | |
resolution, | |
num_res_blocks, | |
attn_resolutions, | |
ch, | |
ch_mult=(1, 2, 4, 8), | |
dropout=0.0, | |
resamp_with_conv=True, | |
rescale_factor=1.0, | |
rescale_module_depth=1, | |
): | |
super().__init__() | |
tmp_chn = z_channels * ch_mult[-1] | |
self.decoder = Decoder( | |
out_ch=out_ch, | |
z_channels=tmp_chn, | |
attn_resolutions=attn_resolutions, | |
dropout=dropout, | |
resamp_with_conv=resamp_with_conv, | |
in_channels=None, | |
num_res_blocks=num_res_blocks, | |
ch_mult=ch_mult, | |
resolution=resolution, | |
ch=ch, | |
) | |
self.rescaler = LatentRescaler( | |
factor=rescale_factor, | |
in_channels=z_channels, | |
mid_channels=tmp_chn, | |
out_channels=tmp_chn, | |
depth=rescale_module_depth, | |
) | |
def forward(self, x): | |
x = self.rescaler(x) | |
x = self.decoder(x) | |
return x | |
class Upsampler(nn.Module): | |
def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2): | |
super().__init__() | |
assert out_size >= in_size | |
num_blocks = int(np.log2(out_size // in_size)) + 1 | |
factor_up = 1.0 + (out_size % in_size) | |
print( | |
f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}" | |
) | |
self.rescaler = LatentRescaler( | |
factor=factor_up, | |
in_channels=in_channels, | |
mid_channels=2 * in_channels, | |
out_channels=in_channels, | |
) | |
self.decoder = Decoder( | |
out_ch=out_channels, | |
resolution=out_size, | |
z_channels=in_channels, | |
num_res_blocks=2, | |
attn_resolutions=[], | |
in_channels=None, | |
ch=in_channels, | |
ch_mult=[ch_mult for _ in range(num_blocks)], | |
) | |
def forward(self, x): | |
x = self.rescaler(x) | |
x = self.decoder(x) | |
return x | |
class Resize(nn.Module): | |
def __init__(self, in_channels=None, learned=False, mode="bilinear"): | |
super().__init__() | |
self.with_conv = learned | |
self.mode = mode | |
if self.with_conv: | |
print( | |
f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode" | |
) | |
raise NotImplementedError() | |
assert in_channels is not None | |
# no asymmetric padding in torch conv, must do it ourselves | |
self.conv = torch.nn.Conv2d( | |
in_channels, in_channels, kernel_size=4, stride=2, padding=1 | |
) | |
def forward(self, x, scale_factor=1.0): | |
if scale_factor == 1.0: | |
return x | |
else: | |
x = torch.nn.functional.interpolate( | |
x, mode=self.mode, align_corners=False, scale_factor=scale_factor | |
) | |
return x | |