Spaces:
Sleeping
Sleeping
import nltk | |
nltk.download('punkt') | |
def create_html(title, content): | |
html = f"""<div style='max-width:100%; max-height:360px; overflow:auto'> | |
<h1>{title}</h1> | |
<br/> | |
<p>{content}</p> | |
</div>""" | |
return html | |
import numpy as np | |
def get_max(data): | |
return max(data, key=lambda x: x['score']) | |
import wikipediaapi | |
from sumy.parsers.plaintext import PlaintextParser | |
from sumy.nlp.tokenizers import Tokenizer | |
from sumy.summarizers.lsa import LsaSummarizer | |
def summarize_wikipedia(search_query, language='en', sentences_count=3): | |
wiki_wiki = wikipediaapi.Wikipedia('AgungBagus (agungbagus@example.com)',language) | |
page = wiki_wiki.page(search_query) | |
if not page.exists(): | |
return "Article not found." | |
content = page.text | |
parser = PlaintextParser.from_string(content, Tokenizer(language)) | |
summarizer = LsaSummarizer() | |
summary = summarizer(parser.document, sentences_count) | |
return ' '.join([str(sentence) for sentence in summary]) | |
import gradio as gr | |
from PIL import Image | |
from transformers import pipeline | |
def image_processing(input_image : gr.Image): | |
image = Image.fromarray(input_image) | |
classifier = pipeline(task="image-classification", model="gungbgs/bird_species_classifier") | |
species = get_max(classifier(image))['label'] | |
species_text = species.lower() | |
result = summarize_wikipedia(species_text) | |
return create_html(species, result) | |
app = gr.Interface( | |
fn = image_processing, | |
inputs = "image", | |
outputs = "html" | |
) | |
app.launch(share=True) |