Spaces:
Runtime error
Runtime error
| from transformers import GPTNeoForCausalLM, GPT2Tokenizer | |
| import gradio as gr | |
| model = GPTNeoForCausalLM.from_pretrained("EleutherAI/gpt-neo-125M") | |
| tokenizer = GPT2Tokenizer.from_pretrained("EleutherAI/gpt-neo-125M") | |
| prompt = """This is a discussion between a person and an entrepreneur. | |
| person: What is your name? | |
| entrepreneur: Mr. Patel | |
| person: Where are you working? | |
| entrepreneur: It's like one of these fancy adjustable height desk | |
| person: What will you work on? | |
| entrepreneur: The international development hackathon | |
| person: What are you working on? | |
| entrepreneur: Developping an classification web app | |
| person: """ | |
| def my_split(s, seps): | |
| res = [s] | |
| for sep in seps: | |
| s, res = res, [] | |
| for seq in s: | |
| res += seq.split(sep) | |
| return res | |
| # input = "Who are you?" | |
| def chat_base(input): | |
| p = prompt + input | |
| input_ids = tokenizer(p, return_tensors="pt").input_ids | |
| gen_tokens = model.generate(input_ids, do_sample=True, temperature=0.7, max_length=150,) | |
| gen_text = tokenizer.batch_decode(gen_tokens)[0] | |
| # print(gen_text) | |
| result = gen_text[len(p):] | |
| # print(">", result) | |
| result = my_split(result, [']', '\n'])[1] | |
| # print(">>", result) | |
| result = result[14:] | |
| # print(">>>", result) | |
| return result | |
| import gradio as gr | |
| def chat(message): | |
| history = gr.get_state() or [] | |
| print(history) | |
| response = chat_base(message) | |
| history.append((message, response)) | |
| gr.set_state(history) | |
| html = "<div class='chatbot'>" | |
| for user_msg, resp_msg in history: | |
| html += f"<div class='user_msg'>{user_msg}</div>" | |
| html += f"<div class='resp_msg'>{resp_msg}</div>" | |
| html += "</div>" | |
| return html | |
| iface = gr.Interface(chat, gr.inputs.Textbox(label="Ask Hassan a Question"), "html", css=""" | |
| .chatbox {display:flex;flex-direction:column} | |
| .user_msg, .resp_msg {padding:4px;margin-bottom:4px;border-radius:4px;width:80%} | |
| .user_msg {background-color:cornflowerblue;color:white;align-self:start} | |
| .resp_msg {background-color:lightgray;align-self:self-end} | |
| """, allow_screenshot=False, allow_flagging=False) | |
| iface.launch() |