|
import numpy as np |
|
import torch.nn.functional as F |
|
from scipy import linalg |
|
import torch.nn as nn |
|
from torchvision import models |
|
|
|
|
|
class INCEPTION_V3_FID(nn.Module): |
|
"""pretrained InceptionV3 network returning feature maps""" |
|
|
|
|
|
DEFAULT_BLOCK_INDEX = 3 |
|
|
|
|
|
BLOCK_INDEX_BY_DIM = { |
|
64: 0, |
|
192: 1, |
|
768: 2, |
|
2048: 3 |
|
} |
|
|
|
def __init__(self, |
|
incep_state_dict, |
|
output_blocks=[DEFAULT_BLOCK_INDEX], |
|
resize_input=True): |
|
"""Build pretrained InceptionV3 |
|
Parameters |
|
---------- |
|
output_blocks : list of int |
|
Indices of blocks to return features of. Possible values are: |
|
- 0: corresponds to output of first max pooling |
|
- 1: corresponds to output of second max pooling |
|
- 2: corresponds to output which is fed to aux classifier |
|
- 3: corresponds to output of final average pooling |
|
resize_input : bool |
|
If true, bilinearly resizes input to width and height 299 before |
|
feeding input to model. As the network without fully connected |
|
layers is fully convolutional, it should be able to handle inputs |
|
of arbitrary size, so resizing might not be strictly needed |
|
normalize_input : bool |
|
If true, normalizes the input to the statistics the pretrained |
|
Inception network expects |
|
""" |
|
super(INCEPTION_V3_FID, self).__init__() |
|
|
|
self.resize_input = resize_input |
|
self.output_blocks = sorted(output_blocks) |
|
self.last_needed_block = max(output_blocks) |
|
|
|
assert self.last_needed_block <= 3, \ |
|
'Last possible output block index is 3' |
|
|
|
self.blocks = nn.ModuleList() |
|
|
|
inception = models.inception_v3() |
|
inception.load_state_dict(incep_state_dict) |
|
for param in inception.parameters(): |
|
param.requires_grad = False |
|
|
|
|
|
block0 = [ |
|
inception.Conv2d_1a_3x3, |
|
inception.Conv2d_2a_3x3, |
|
inception.Conv2d_2b_3x3, |
|
nn.MaxPool2d(kernel_size=3, stride=2) |
|
] |
|
self.blocks.append(nn.Sequential(*block0)) |
|
|
|
|
|
if self.last_needed_block >= 1: |
|
block1 = [ |
|
inception.Conv2d_3b_1x1, |
|
inception.Conv2d_4a_3x3, |
|
nn.MaxPool2d(kernel_size=3, stride=2) |
|
] |
|
self.blocks.append(nn.Sequential(*block1)) |
|
|
|
|
|
if self.last_needed_block >= 2: |
|
block2 = [ |
|
inception.Mixed_5b, |
|
inception.Mixed_5c, |
|
inception.Mixed_5d, |
|
inception.Mixed_6a, |
|
inception.Mixed_6b, |
|
inception.Mixed_6c, |
|
inception.Mixed_6d, |
|
inception.Mixed_6e, |
|
] |
|
self.blocks.append(nn.Sequential(*block2)) |
|
|
|
|
|
if self.last_needed_block >= 3: |
|
block3 = [ |
|
inception.Mixed_7a, |
|
inception.Mixed_7b, |
|
inception.Mixed_7c, |
|
nn.AdaptiveAvgPool2d(output_size=(1, 1)) |
|
] |
|
self.blocks.append(nn.Sequential(*block3)) |
|
|
|
def forward(self, inp): |
|
"""Get Inception feature maps |
|
Parameters |
|
---------- |
|
inp : torch.autograd.Variable |
|
Input tensor of shape Bx3xHxW. Values are expected to be in |
|
range (0, 1) |
|
Returns |
|
------- |
|
List of torch.autograd.Variable, corresponding to the selected output |
|
block, sorted ascending by index |
|
""" |
|
outp = [] |
|
x = inp |
|
|
|
if self.resize_input: |
|
x = F.interpolate(x, size=(299, 299), mode='bilinear') |
|
|
|
x = x.clone() |
|
|
|
x = x * 0.5 + 0.5 |
|
x[:, 0] = x[:, 0] * (0.229 / 0.5) + (0.485 - 0.5) / 0.5 |
|
x[:, 1] = x[:, 1] * (0.224 / 0.5) + (0.456 - 0.5) / 0.5 |
|
x[:, 2] = x[:, 2] * (0.225 / 0.5) + (0.406 - 0.5) / 0.5 |
|
|
|
for idx, block in enumerate(self.blocks): |
|
x = block(x) |
|
if idx in self.output_blocks: |
|
outp.append(x) |
|
|
|
if idx == self.last_needed_block: |
|
break |
|
|
|
return outp |
|
|
|
|
|
def get_activations(images, model, batch_size, verbose=False): |
|
"""Calculates the activations of the pool_3 layer for all images. |
|
Params: |
|
-- images : Numpy array of dimension (n_images, 3, hi, wi). The values |
|
must lie between 0 and 1. |
|
-- model : Instance of inception model |
|
-- batch_size : the images numpy array is split into batches with |
|
batch size batch_size. A reasonable batch size depends |
|
on the hardware. |
|
-- verbose : If set to True and parameter out_step is given, the number |
|
of calculated batches is reported. |
|
Returns: |
|
-- A numpy array of dimension (num images, dims) that contains the |
|
activations of the given tensor when feeding inception with the |
|
query tensor. |
|
""" |
|
model.eval() |
|
|
|
|
|
d0 = int(images.size(0)) |
|
if batch_size > d0: |
|
print(('Warning: batch size is bigger than the data size. ' |
|
'Setting batch size to data size')) |
|
batch_size = d0 |
|
|
|
n_batches = d0 // batch_size |
|
n_used_imgs = n_batches * batch_size |
|
|
|
pred_arr = np.empty((n_used_imgs, 2048)) |
|
for i in range(n_batches): |
|
if verbose: |
|
print('\rPropagating batch %d/%d' % (i + 1, n_batches), end='', flush=True) |
|
start = i * batch_size |
|
end = start + batch_size |
|
|
|
'''batch = torch.from_numpy(images[start:end]).type(torch.FloatTensor) |
|
batch = Variable(batch, volatile=True) |
|
if cfg.CUDA: |
|
batch = batch.cuda()''' |
|
batch = images[start:end] |
|
|
|
pred = model(batch)[0] |
|
|
|
|
|
|
|
if pred.shape[2] != 1 or pred.shape[3] != 1: |
|
pred = F.adaptive_avg_pool2d(pred, output_size=(1, 1)) |
|
|
|
pred_arr[start:end] = pred.cpu().data.numpy().reshape(batch_size, -1) |
|
|
|
if verbose: |
|
print(' done') |
|
|
|
return pred_arr |
|
|
|
|
|
def calculate_activation_statistics(act): |
|
"""Calculation of the statistics used by the FID. |
|
Params: |
|
-- act : Numpy array of dimension (n_images, dim (e.g. 2048)). |
|
Returns: |
|
-- mu : The mean over samples of the activations of the pool_3 layer of |
|
the inception model. |
|
-- sigma : The covariance matrix of the activations of the pool_3 layer of |
|
the inception model. |
|
""" |
|
mu = np.mean(act, axis=0) |
|
sigma = np.cov(act, rowvar=False) |
|
return mu, sigma |
|
|
|
|
|
def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6): |
|
"""Numpy implementation of the Frechet Distance. |
|
The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1) |
|
and X_2 ~ N(mu_2, C_2) is |
|
d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)). |
|
Stable version by Dougal J. Sutherland. |
|
Params: |
|
-- mu1 : Numpy array containing the activations of a layer of the |
|
inception net (like returned by the function 'get_predictions') |
|
for generated samples. |
|
-- mu2 : The sample mean over activations, precalculated on an |
|
representive data set. |
|
-- sigma1: The covariance matrix over activations for generated samples. |
|
-- sigma2: The covariance matrix over activations, precalculated on an |
|
representive data set. |
|
Returns: |
|
-- : The Frechet Distance. |
|
""" |
|
|
|
mu1 = np.atleast_1d(mu1) |
|
mu2 = np.atleast_1d(mu2) |
|
|
|
sigma1 = np.atleast_2d(sigma1) |
|
sigma2 = np.atleast_2d(sigma2) |
|
|
|
assert mu1.shape == mu2.shape, \ |
|
'Training and test mean vectors have different lengths' |
|
assert sigma1.shape == sigma2.shape, \ |
|
'Training and test covariances have different dimensions' |
|
|
|
diff = mu1 - mu2 |
|
|
|
|
|
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False) |
|
if not np.isfinite(covmean).all(): |
|
msg = ('fid calculation produces singular product; ' |
|
'adding %s to diagonal of cov estimates') % eps |
|
print(msg) |
|
offset = np.eye(sigma1.shape[0]) * eps |
|
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset)) |
|
|
|
|
|
if np.iscomplexobj(covmean): |
|
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3): |
|
m = np.max(np.abs(covmean.imag)) |
|
raise ValueError('Imaginary component {}'.format(m)) |
|
covmean = covmean.real |
|
|
|
tr_covmean = np.trace(covmean) |
|
|
|
return (diff.dot(diff) + np.trace(sigma1) + |
|
np.trace(sigma2) - 2 * tr_covmean) |
|
|