guardiancc's picture
Update app.py
71e42ea verified
raw
history blame
13.6 kB
import os
os.system("git clone https://github.com/google-research/frame-interpolation")
import sys
sys.path.append("frame-interpolation")
import math
import cv2
import numpy as np
import tensorflow as tf
import mediapy
from PIL import Image
import gradio as gr
from huggingface_hub import snapshot_download
from image_tools.sizes import resize_and_crop
from pymatting import cutout
model = snapshot_download(repo_id="akhaliq/frame-interpolation-film-style")
from eval import interpolator, util
interpolator = interpolator.Interpolator(model, None)
ffmpeg_path = util.get_ffmpeg_path()
mediapy.set_ffmpeg(ffmpeg_path)
fl_ = ""
fl_mask = ""
def do_interpolation(frame1, frame2, interpolation, n):
print("tween frames: " + str(interpolation))
print(frame1, frame2)
input_frames = [frame1, frame2]
frames = list(
util.interpolate_recursively_from_files(
input_frames, int(interpolation), interpolator))
#print(frames)
mediapy.write_video(f"{n}_to_{n+1}_out.mp4", frames, fps=25)
return f"{n}_to_{n+1}_out.mp4"
def get_frames(video_in, step, name, n):
frames = []
cap = cv2.VideoCapture(video_in)
cframes = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
cfps = int(cap.get(cv2.CAP_PROP_FPS))
print(f'frames: {cframes}, fps: {cfps}')
#resize the video
#clip = VideoFileClip(video_in)
#check fps
#if cfps > 25:
# print("video rate is over 25, resetting to 25")
# clip_resized = clip.resize(height=1024)
# clip_resized.write_videofile("video_resized.mp4", fps=25)
#else:
# print("video rate is OK")
# clip_resized = clip.resize(height=1024)
# clip_resized.write_videofile("video_resized.mp4", fps=cfps)
#print("video resized to 1024 height")
# Opens the Video file with CV2
#cap = cv2.VideoCapture("video_resized.mp4")
fps = cap.get(cv2.CAP_PROP_FPS)
print("video fps: " + str(fps))
i=0
while(cap.isOpened()):
ret, frame = cap.read()
if ret == False:
break
#if resize_w > 0:
#resize_h = resize_w / 2.0
#frame = cv2.resize(frame, (int(resize_w), int(resize_h)))
cv2.imwrite(f"{str(n)}_{name}_{step}{str(i)}.png", frame)
frames.append(f"{str(n)}_{name}_{step}{str(i)}.png")
i+=1
cap.release()
cv2.destroyAllWindows()
print("broke the video into frames")
return frames, fps
def create_video(frames, fps, type):
print("building video result")
imgs = []
for j, img in enumerate(frames):
imgs.append(cv2.cvtColor(cv2.imread(img).astype(np.uint8), cv2.COLOR_BGR2RGB))
mediapy.write_video(type + "_result.mp4", imgs, fps=fps)
return type + "_result.mp4"
def infer(f_in, interpolation, fps_output):
# 1. break video into frames and get FPS
#break_vid = get_frames(url_in, "vid_input_frame", "origin", resize_n)
frames_list = f_in #break_vid[0]
fps = 1 #break_vid[1]
print(f"ORIGIN FPS: {fps}")
n_frame = int(300) #limited to 300 frames
#n_frame = len(frames_list)
if n_frame >= len(frames_list):
print("video is shorter than the cut value")
n_frame = len(frames_list)
# 2. prepare frames result arrays
result_frames = []
print("set stop frames to: " + str(n_frame))
for idx, frame in enumerate(frames_list[0:int(n_frame)]):
if idx < len(frames_list) - 1:
next_frame = frames_list[idx+1]
interpolated_frames = do_interpolation(frame, next_frame, interpolation, idx) # should return a list of interpolated frames
break_interpolated_video = get_frames(interpolated_frames, "interpol", f"{idx}_", -1)
print(break_interpolated_video[0])
for j, img in enumerate(break_interpolated_video[0][0:len(break_interpolated_video[0])-1]):
print(f"IMG:{img}")
os.rename(img, f"{idx}_to_{idx+1}_{j}.png")
result_frames.append(f"{idx}_to_{idx+1}_{j}.png")
print("frames " + str(idx) + " & " + str(idx+1) + "/" + str(n_frame) + ": done;")
#print(f"CURRENT FRAMES: {result_frames}")
result_frames.append(f"{frames_list[n_frame-1]}")
final_vid = create_video(result_frames, fps_output, "interpolated")
files = final_vid
print("interpolated frames: " + str(len(frames_list)) + " -> " + str(len(result_frames)))
cv2.destroyAllWindows()
return final_vid, files
def logscale(linear):
return int(math.pow(2, linear))
def linscale(linear):
return int(math.log2(linear))
def remove_bg(fl, count, mh, ms, md, lm, b, d):
global fl_
fr = cv2.imread(fl).astype(np.uint8)
#b = 3
#element = cv2.getStructuringElement(cv2.MORPH_RECT, (2 * b + 1, 2 * b + 1), (b, b))
n = int((fr.shape[0]*fr.shape[1]) / (256*256))
fr_bg = cv2.medianBlur(fr, 255)
for i in range(0, n):
fr_bg = cv2.medianBlur(fr_bg, 255)
fr_diff = cv2.convertScaleAbs(fr.astype(np.int16)-fr_bg.astype(np.int16)).astype(np.uint8)
hsv = cv2.cvtColor(fr_diff, cv2.COLOR_BGR2HSV) # range: 180, 255, 255
fr_diff = cv2.cvtColor(fr_diff, cv2.COLOR_BGR2GRAY)
if lm == "median":
mh = np.median(hsv[:,:,0])
ms = np.median(hsv[:,:,1])
md = np.median(hsv[:,:,2])
elif lm == "average":
mh = np.average(hsv[:,:,0])
ms = np.average(hsv[:,:,1])
md = np.average(hsv[:,:,2])
bg = cv2.inRange(hsv, np.array([0,0,0]), np.array([mh,ms,md]))
fr_diff[bg>0] = 0
fr_diff[bg==0] = 255
cv2.rectangle(fr_diff,(0,0),(fr_diff.shape[1]-1,fr_diff.shape[0]-1),(255,255,255),1)
mask = cv2.floodFill(fr_diff, None, (0, 0), 255, 0, 0, (4 | cv2.FLOODFILL_FIXED_RANGE))[2] #(4 | cv.FLOODFILL_FIXED_RANGE | cv.FLOODFILL_MASK_ONLY | 255 << 8)
# 255 << 8 tells to fill with the value 255)
mask = mask[1:mask.shape[0]-1, 1:mask.shape[1]-1]
fr_diff[mask>0] = 0
#fr_diff = cv2.dilate(cv2.erode(fr_diff, element), element)
if count % 2: # odd: is photo without the flash
fr_mask = cv2.cvtColor(cv2.imread(fl_).astype(np.uint8), cv2.COLOR_BGR2GRAY)
fr_not = np.bitwise_not(fr_mask)
fr_shadow = np.bitwise_and(fr_diff, fr_not).astype(np.uint8)
fr_fg = np.bitwise_or(fr_diff, fr_mask).astype(np.uint8)
cv2.imwrite(fl_, fr_mask)
m = cv2.inRange(fr, np.array([240,240,240]), np.array([255,255,255]))
fr[m>0] = (239,239,239)
m = cv2.inRange(fr, np.array([0,0,0]), np.array([15,15,15]))
fr[m>0] = (16,16,16)
fr[fr_shadow>0] = (fr[fr_shadow>0] / 17).astype(np.uint8)
#fr[fr_fg==0] = (255,255,255)
fr_fg[fr_fg>0] = 3 #probable fg
mask, bgdModel, fgdModel = cv2.grabCut(fr, fr_fg, None,None,None,65, cv2.GC_INIT_WITH_MASK)
mask = np.where((mask==2)|(mask==0),0,1).astype('uint8')
#fr[mask==0] = (255,255,255)
cv2.imwrite(fl, fr)
#b = 3
#d = 15
element = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2 * b + 1, 2 * b + 1), (b, b))
mask_e = cv2.erode(mask, element) * 255
element = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2 * d + 1, 2 * d + 1), (d, d))
mask_d = cv2.dilate(mask, element) * 127
mask_d[mask_e>0] = 255
cv2.imwrite(f"{str(count)}_trimask.png", mask_d.astype(np.uint8))
cutout(fl, f"{str(count)}_trimask.png", f"{str(count)}_cutout.png")
a_map = cv2.imread(f"{str(count)}_cutout.png", cv2.IMREAD_UNCHANGED).astype(np.uint8)
B, G, R, A = cv2.split(a_map)
alpha = A / 255
alpha[A<255] = alpha[A<255] / 17
R = (255 * (1 - alpha) + R * alpha).astype(np.uint8)
G = (255 * (1 - alpha) + G * alpha).astype(np.uint8)
B = (255 * (1 - alpha) + B * alpha).astype(np.uint8)
fr = cv2.merge((B, G, R))
cv2.imwrite(fl, fr)
return fl
else: # even: with the flash
fl_ = fl.split(".")[0] + "_.png"
cv2.imwrite(fl_, fr_diff.astype(np.uint8))
return fl_
def denoise(fl):
fr = cv2.imread(fl).astype(np.uint8)
fr = cv2.fastNlMeansDenoisingColored(fr, None, 5,5,7,21)
cv2.imwrite(fl, fr)
return fl
def sharpest(fl, i):
break_vid = get_frames(fl, "vid_input_frame", "origin", i)
frames = []
blur_s = []
for jdx, fr in enumerate(break_vid[0]):
frames.append(cv2.imread(fr).astype(np.uint8))
blur_s.append(cv2.Laplacian(cv2.cvtColor(frames[len(frames)-1], cv2.COLOR_BGR2GRAY), cv2.CV_64F).var())
print(str(int(blur_s[jdx])))
indx = np.argmax(blur_s)
fl = break_vid[0][indx]
n = 25
half = int(n/2)
if indx-half < 0:
n = indx*2+1
elif indx+half >= len(frames):
n = (len(frames)-1-indx)*2+1
#denoise
frame = cv2.fastNlMeansDenoisingColoredMulti(
srcImgs = frames,
imgToDenoiseIndex = indx,
temporalWindowSize = n,
hColor = 5,
templateWindowSize = 7,
searchWindowSize = 21)
cv2.imwrite(fl, frame)
print(str(i) +'th file, sharpest frame: '+str(indx)+', name: '+fl)
return fl
def sortFiles(e):
e = e.split('/')
return e[len(e)-1]
def loadf(f, r_bg, mh, ms, md, lm, b, d):
if f != None and f[0] != None:
f.sort(key=sortFiles)
fnew = []
for i, fl in enumerate(f):
ftype = fl.split('/')
if ftype[len(ftype)-1].split('.')[1] == 'mp4':
fl = sharpest(fl, i)
else:
fl = denoise(fl)
if r_bg == True:
fl = remove_bg(fl, i, mh, ms, md, lm, b, d)
if i % 2: # odd: is photo without the flash
fnew.append(fl)
else:
fnew.append(fl)
return fnew, fnew
else:
return f, f
title="""
<div style="text-align: center; max-width: 500px; margin: 0 auto;">
<div
style="
display: inline-flex;
align-items: center;
gap: 0.8rem;
font-size: 1.75rem;
margin-bottom: 10px;
"
>
<h1 style="font-weight: 600; margin-bottom: 7px;">
Video interpolation from images with FILM
</h1>
</div>
<p> This space uses FILM to generate interpolation frames in a set of image files you need to turn into a video for stop motion animation.
If .mp4 videos are uploaded instead, selects the sharpest frame of each. Limited to 300 uploaded frames, from the beginning of input.<br />
<a style="display:inline-block" href="https://huggingface.co/spaces/freealise/video_frame_interpolation?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a>
</p>
</div>
"""
with gr.Blocks() as demo:
with gr.Column():
gr.HTML(title)
with gr.Row():
with gr.Column():
with gr.Accordion(label="Upload files here", open=True):
files_orig = gr.File(file_count="multiple", file_types=['image', '.mp4'])
files_input = gr.File(file_count="multiple", visible=False)
gallery_input = gr.Gallery(label="Slideshow", preview=True, columns=8192, interactive=False)
with gr.Group():
r_bg = gr.Checkbox(label="Remove background", value=False)
with gr.Accordion(label="Max differences for background", open=False):
mh = gr.Slider(minimum=0, maximum=180, step=1, value=180, label="Hue")
ms = gr.Slider(minimum=0, maximum=255, step=1, value=255, label="Saturation")
md = gr.Slider(minimum=0, maximum=255, step=1, value=12, label="Lightness")
lm = gr.Radio(label="Use max diffs from", choices=["average", "median", "slider"], value="slider")
with gr.Tab("Border"):
b_size = gr.Slider(minimum=1, maximum=255, step=2, value=3, label="Inner")
d_size = gr.Slider(minimum=1, maximum=255, step=2, value=15, label="Outer")
files_orig.upload(fn=loadf, inputs=[files_orig, r_bg, mh, ms, md, lm, b_size, d_size], outputs=[files_input, gallery_input])
with gr.Row():
interpolation_slider = gr.Slider(minimum=1, maximum=24, step=1, value=1, label="Interpolation Steps: ")
with gr.Row():
fps_output_slider = gr.Slider(minimum=0, maximum=24, step=1, value=24, label="FPS output: ")
submit_btn = gr.Button("Submit")
with gr.Column():
video_output = gr.Video()
file_output = gr.File()
submit_btn.click(fn=infer, inputs=[files_input, interpolation_slider, fps_output_slider], outputs=[video_output, file_output])
demo.launch()