|
import os |
|
os.system("git clone https://github.com/google-research/frame-interpolation") |
|
import sys |
|
sys.path.append("frame-interpolation") |
|
|
|
import math |
|
import cv2 |
|
import numpy as np |
|
import tensorflow as tf |
|
import mediapy |
|
from PIL import Image |
|
|
|
import gradio as gr |
|
|
|
from huggingface_hub import snapshot_download |
|
from image_tools.sizes import resize_and_crop |
|
from pymatting import cutout |
|
|
|
|
|
model = snapshot_download(repo_id="akhaliq/frame-interpolation-film-style") |
|
from eval import interpolator, util |
|
interpolator = interpolator.Interpolator(model, None) |
|
|
|
ffmpeg_path = util.get_ffmpeg_path() |
|
mediapy.set_ffmpeg(ffmpeg_path) |
|
|
|
fl_ = "" |
|
fl_mask = "" |
|
|
|
|
|
def do_interpolation(frame1, frame2, interpolation, n): |
|
print("tween frames: " + str(interpolation)) |
|
print(frame1, frame2) |
|
input_frames = [frame1, frame2] |
|
frames = list( |
|
util.interpolate_recursively_from_files( |
|
input_frames, int(interpolation), interpolator)) |
|
|
|
|
|
mediapy.write_video(f"{n}_to_{n+1}_out.mp4", frames, fps=25) |
|
return f"{n}_to_{n+1}_out.mp4" |
|
|
|
def get_frames(video_in, step, name, n): |
|
frames = [] |
|
cap = cv2.VideoCapture(video_in) |
|
cframes = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) |
|
cfps = int(cap.get(cv2.CAP_PROP_FPS)) |
|
print(f'frames: {cframes}, fps: {cfps}') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
fps = cap.get(cv2.CAP_PROP_FPS) |
|
print("video fps: " + str(fps)) |
|
i=0 |
|
while(cap.isOpened()): |
|
ret, frame = cap.read() |
|
if ret == False: |
|
break |
|
|
|
|
|
|
|
|
|
cv2.imwrite(f"{str(n)}_{name}_{step}{str(i)}.png", frame) |
|
frames.append(f"{str(n)}_{name}_{step}{str(i)}.png") |
|
i+=1 |
|
|
|
cap.release() |
|
cv2.destroyAllWindows() |
|
print("broke the video into frames") |
|
|
|
return frames, fps |
|
|
|
|
|
def create_video(frames, fps, type): |
|
print("building video result") |
|
imgs = [] |
|
for j, img in enumerate(frames): |
|
imgs.append(cv2.cvtColor(cv2.imread(img).astype(np.uint8), cv2.COLOR_BGR2RGB)) |
|
|
|
mediapy.write_video(type + "_result.mp4", imgs, fps=fps) |
|
return type + "_result.mp4" |
|
|
|
|
|
def infer(f_in, interpolation, fps_output): |
|
|
|
|
|
frames_list = f_in |
|
fps = 1 |
|
print(f"ORIGIN FPS: {fps}") |
|
n_frame = int(300) |
|
|
|
|
|
if n_frame >= len(frames_list): |
|
print("video is shorter than the cut value") |
|
n_frame = len(frames_list) |
|
|
|
|
|
result_frames = [] |
|
print("set stop frames to: " + str(n_frame)) |
|
|
|
for idx, frame in enumerate(frames_list[0:int(n_frame)]): |
|
if idx < len(frames_list) - 1: |
|
next_frame = frames_list[idx+1] |
|
|
|
interpolated_frames = do_interpolation(frame, next_frame, interpolation, idx) |
|
break_interpolated_video = get_frames(interpolated_frames, "interpol", f"{idx}_", -1) |
|
print(break_interpolated_video[0]) |
|
for j, img in enumerate(break_interpolated_video[0][0:len(break_interpolated_video[0])-1]): |
|
print(f"IMG:{img}") |
|
os.rename(img, f"{idx}_to_{idx+1}_{j}.png") |
|
result_frames.append(f"{idx}_to_{idx+1}_{j}.png") |
|
|
|
print("frames " + str(idx) + " & " + str(idx+1) + "/" + str(n_frame) + ": done;") |
|
|
|
result_frames.append(f"{frames_list[n_frame-1]}") |
|
final_vid = create_video(result_frames, fps_output, "interpolated") |
|
|
|
files = final_vid |
|
print("interpolated frames: " + str(len(frames_list)) + " -> " + str(len(result_frames))) |
|
cv2.destroyAllWindows() |
|
|
|
return final_vid, files |
|
|
|
|
|
def logscale(linear): |
|
return int(math.pow(2, linear)) |
|
|
|
def linscale(linear): |
|
return int(math.log2(linear)) |
|
|
|
def remove_bg(fl, count, mh, ms, md, lm, b, d): |
|
global fl_ |
|
fr = cv2.imread(fl).astype(np.uint8) |
|
|
|
|
|
|
|
|
|
n = int((fr.shape[0]*fr.shape[1]) / (256*256)) |
|
fr_bg = cv2.medianBlur(fr, 255) |
|
|
|
for i in range(0, n): |
|
fr_bg = cv2.medianBlur(fr_bg, 255) |
|
|
|
fr_diff = cv2.convertScaleAbs(fr.astype(np.int16)-fr_bg.astype(np.int16)).astype(np.uint8) |
|
hsv = cv2.cvtColor(fr_diff, cv2.COLOR_BGR2HSV) |
|
|
|
fr_diff = cv2.cvtColor(fr_diff, cv2.COLOR_BGR2GRAY) |
|
|
|
if lm == "median": |
|
mh = np.median(hsv[:,:,0]) |
|
ms = np.median(hsv[:,:,1]) |
|
md = np.median(hsv[:,:,2]) |
|
elif lm == "average": |
|
mh = np.average(hsv[:,:,0]) |
|
ms = np.average(hsv[:,:,1]) |
|
md = np.average(hsv[:,:,2]) |
|
bg = cv2.inRange(hsv, np.array([0,0,0]), np.array([mh,ms,md])) |
|
fr_diff[bg>0] = 0 |
|
fr_diff[bg==0] = 255 |
|
|
|
cv2.rectangle(fr_diff,(0,0),(fr_diff.shape[1]-1,fr_diff.shape[0]-1),(255,255,255),1) |
|
mask = cv2.floodFill(fr_diff, None, (0, 0), 255, 0, 0, (4 | cv2.FLOODFILL_FIXED_RANGE))[2] |
|
|
|
mask = mask[1:mask.shape[0]-1, 1:mask.shape[1]-1] |
|
fr_diff[mask>0] = 0 |
|
|
|
|
|
|
|
if count % 2: |
|
fr_mask = cv2.cvtColor(cv2.imread(fl_).astype(np.uint8), cv2.COLOR_BGR2GRAY) |
|
fr_not = np.bitwise_not(fr_mask) |
|
fr_shadow = np.bitwise_and(fr_diff, fr_not).astype(np.uint8) |
|
fr_fg = np.bitwise_or(fr_diff, fr_mask).astype(np.uint8) |
|
cv2.imwrite(fl_, fr_mask) |
|
|
|
m = cv2.inRange(fr, np.array([240,240,240]), np.array([255,255,255])) |
|
fr[m>0] = (239,239,239) |
|
m = cv2.inRange(fr, np.array([0,0,0]), np.array([15,15,15])) |
|
fr[m>0] = (16,16,16) |
|
fr[fr_shadow>0] = (fr[fr_shadow>0] / 17).astype(np.uint8) |
|
|
|
|
|
fr_fg[fr_fg>0] = 3 |
|
mask, bgdModel, fgdModel = cv2.grabCut(fr, fr_fg, None,None,None,65, cv2.GC_INIT_WITH_MASK) |
|
mask = np.where((mask==2)|(mask==0),0,1).astype('uint8') |
|
|
|
|
|
cv2.imwrite(fl, fr) |
|
|
|
|
|
|
|
element = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2 * b + 1, 2 * b + 1), (b, b)) |
|
mask_e = cv2.erode(mask, element) * 255 |
|
element = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2 * d + 1, 2 * d + 1), (d, d)) |
|
mask_d = cv2.dilate(mask, element) * 127 |
|
mask_d[mask_e>0] = 255 |
|
cv2.imwrite(f"{str(count)}_trimask.png", mask_d.astype(np.uint8)) |
|
cutout(fl, f"{str(count)}_trimask.png", f"{str(count)}_cutout.png") |
|
|
|
a_map = cv2.imread(f"{str(count)}_cutout.png", cv2.IMREAD_UNCHANGED).astype(np.uint8) |
|
B, G, R, A = cv2.split(a_map) |
|
alpha = A / 255 |
|
alpha[A<255] = alpha[A<255] / 17 |
|
R = (255 * (1 - alpha) + R * alpha).astype(np.uint8) |
|
G = (255 * (1 - alpha) + G * alpha).astype(np.uint8) |
|
B = (255 * (1 - alpha) + B * alpha).astype(np.uint8) |
|
fr = cv2.merge((B, G, R)) |
|
|
|
cv2.imwrite(fl, fr) |
|
return fl |
|
else: |
|
fl_ = fl.split(".")[0] + "_.png" |
|
cv2.imwrite(fl_, fr_diff.astype(np.uint8)) |
|
return fl_ |
|
|
|
def denoise(fl): |
|
fr = cv2.imread(fl).astype(np.uint8) |
|
fr = cv2.fastNlMeansDenoisingColored(fr, None, 5,5,7,21) |
|
cv2.imwrite(fl, fr) |
|
return fl |
|
|
|
def sharpest(fl, i): |
|
break_vid = get_frames(fl, "vid_input_frame", "origin", i) |
|
|
|
frames = [] |
|
blur_s = [] |
|
for jdx, fr in enumerate(break_vid[0]): |
|
frames.append(cv2.imread(fr).astype(np.uint8)) |
|
blur_s.append(cv2.Laplacian(cv2.cvtColor(frames[len(frames)-1], cv2.COLOR_BGR2GRAY), cv2.CV_64F).var()) |
|
print(str(int(blur_s[jdx]))) |
|
|
|
indx = np.argmax(blur_s) |
|
fl = break_vid[0][indx] |
|
|
|
n = 25 |
|
half = int(n/2) |
|
if indx-half < 0: |
|
n = indx*2+1 |
|
elif indx+half >= len(frames): |
|
n = (len(frames)-1-indx)*2+1 |
|
|
|
|
|
frame = cv2.fastNlMeansDenoisingColoredMulti( |
|
srcImgs = frames, |
|
imgToDenoiseIndex = indx, |
|
temporalWindowSize = n, |
|
hColor = 5, |
|
templateWindowSize = 7, |
|
searchWindowSize = 21) |
|
|
|
cv2.imwrite(fl, frame) |
|
print(str(i) +'th file, sharpest frame: '+str(indx)+', name: '+fl) |
|
return fl |
|
|
|
def sortFiles(e): |
|
e = e.split('/') |
|
return e[len(e)-1] |
|
|
|
def loadf(f, r_bg, mh, ms, md, lm, b, d): |
|
if f != None and f[0] != None: |
|
f.sort(key=sortFiles) |
|
fnew = [] |
|
|
|
for i, fl in enumerate(f): |
|
ftype = fl.split('/') |
|
if ftype[len(ftype)-1].split('.')[1] == 'mp4': |
|
fl = sharpest(fl, i) |
|
else: |
|
fl = denoise(fl) |
|
|
|
if r_bg == True: |
|
fl = remove_bg(fl, i, mh, ms, md, lm, b, d) |
|
if i % 2: |
|
fnew.append(fl) |
|
else: |
|
fnew.append(fl) |
|
|
|
return fnew, fnew |
|
else: |
|
return f, f |
|
|
|
|
|
title=""" |
|
<div style="text-align: center; max-width: 500px; margin: 0 auto;"> |
|
<div |
|
style=" |
|
display: inline-flex; |
|
align-items: center; |
|
gap: 0.8rem; |
|
font-size: 1.75rem; |
|
margin-bottom: 10px; |
|
" |
|
> |
|
<h1 style="font-weight: 600; margin-bottom: 7px;"> |
|
Video interpolation from images with FILM |
|
</h1> |
|
|
|
</div> |
|
<p> This space uses FILM to generate interpolation frames in a set of image files you need to turn into a video for stop motion animation. |
|
If .mp4 videos are uploaded instead, selects the sharpest frame of each. Limited to 300 uploaded frames, from the beginning of input.<br /> |
|
<a style="display:inline-block" href="https://huggingface.co/spaces/freealise/video_frame_interpolation?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a> |
|
</p> |
|
</div> |
|
""" |
|
|
|
with gr.Blocks() as demo: |
|
with gr.Column(): |
|
gr.HTML(title) |
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Accordion(label="Upload files here", open=True): |
|
files_orig = gr.File(file_count="multiple", file_types=['image', '.mp4']) |
|
files_input = gr.File(file_count="multiple", visible=False) |
|
gallery_input = gr.Gallery(label="Slideshow", preview=True, columns=8192, interactive=False) |
|
with gr.Group(): |
|
r_bg = gr.Checkbox(label="Remove background", value=False) |
|
with gr.Accordion(label="Max differences for background", open=False): |
|
mh = gr.Slider(minimum=0, maximum=180, step=1, value=180, label="Hue") |
|
ms = gr.Slider(minimum=0, maximum=255, step=1, value=255, label="Saturation") |
|
md = gr.Slider(minimum=0, maximum=255, step=1, value=12, label="Lightness") |
|
lm = gr.Radio(label="Use max diffs from", choices=["average", "median", "slider"], value="slider") |
|
with gr.Tab("Border"): |
|
b_size = gr.Slider(minimum=1, maximum=255, step=2, value=3, label="Inner") |
|
d_size = gr.Slider(minimum=1, maximum=255, step=2, value=15, label="Outer") |
|
files_orig.upload(fn=loadf, inputs=[files_orig, r_bg, mh, ms, md, lm, b_size, d_size], outputs=[files_input, gallery_input]) |
|
|
|
with gr.Row(): |
|
interpolation_slider = gr.Slider(minimum=1, maximum=24, step=1, value=1, label="Interpolation Steps: ") |
|
with gr.Row(): |
|
fps_output_slider = gr.Slider(minimum=0, maximum=24, step=1, value=24, label="FPS output: ") |
|
submit_btn = gr.Button("Submit") |
|
|
|
with gr.Column(): |
|
video_output = gr.Video() |
|
file_output = gr.File() |
|
|
|
submit_btn.click(fn=infer, inputs=[files_input, interpolation_slider, fps_output_slider], outputs=[video_output, file_output]) |
|
|
|
demo.launch() |