fountai commited on
Commit
df91e4c
·
1 Parent(s): 6b323b9
Files changed (1) hide show
  1. app.py +12 -6
app.py CHANGED
@@ -67,18 +67,17 @@ def random_positioning(input, output_size=(1024, 1024)):
67
 
68
  scale_factor = random.uniform(0.5, 1.0)
69
 
70
- new_size = (int(input.shape[1] * scale_factor), int(input.shape[0] * scale_factor))
71
 
72
- resized_image = cv2.resize(input, new_size, interpolation=cv2.INTER_AREA)
73
 
74
  background = np.ones((output_size[1], output_size[0], 3), dtype=np.uint8) * 255
75
 
76
- x_offset = random.randint(0, output_size[0] - new_size[0])
77
- y_offset = random.randint(0, output_size[1] - new_size[1])
78
 
79
  background[y_offset:y_offset+new_size[1], x_offset:x_offset+new_size[0]] = resized_image
80
- background = np.clip(background, 0, 255)
81
- background = background.astype(np.uint8)
82
 
83
  return background
84
 
@@ -114,6 +113,9 @@ def execute(image, prompt):
114
 
115
  imgs = [ random_positioning(img), random_positioning(img)]
116
 
 
 
 
117
  pipe.load_lora_weights("XLabs-AI/flux-RealismLora", weight_name='lora.safetensors')
118
  response = []
119
 
@@ -147,8 +149,12 @@ def execute(image, prompt):
147
 
148
  return response
149
 
 
 
150
  iface = gr.Interface(
151
  fn=execute,
 
 
152
  inputs=[
153
  gr.Image(type="filepath"),
154
  gr.Textbox(label="Prompt")
 
67
 
68
  scale_factor = random.uniform(0.5, 1.0)
69
 
70
+ new_size = (int(input_image.shape[1] * scale_factor), int(input_image.shape[0] * scale_factor))
71
 
72
+ resized_image = cv2.resize(input_image, new_size, interpolation=cv2.INTER_AREA)
73
 
74
  background = np.ones((output_size[1], output_size[0], 3), dtype=np.uint8) * 255
75
 
76
+ x_offset = (output_size[0] - new_size[0]) // 2
77
+ y_offset = (output_size[1] - new_size[1]) // 2
78
 
79
  background[y_offset:y_offset+new_size[1], x_offset:x_offset+new_size[0]] = resized_image
80
+
 
81
 
82
  return background
83
 
 
113
 
114
  imgs = [ random_positioning(img), random_positioning(img)]
115
 
116
+ # Created by Fountai
117
+ # https://x.com/EuFountai
118
+
119
  pipe.load_lora_weights("XLabs-AI/flux-RealismLora", weight_name='lora.safetensors')
120
  response = []
121
 
 
149
 
150
  return response
151
 
152
+ description = "This is an unofficial implementation of the ip face adapter for FLUX DEV and does not explicitly follow the ip face model, I created a wrapper with inpaint and mediapipe, I like using Fake IP Adapter"
153
+ title = "Flux IP Face Adapter"
154
  iface = gr.Interface(
155
  fn=execute,
156
+ description=description,
157
+ title=title,
158
  inputs=[
159
  gr.Image(type="filepath"),
160
  gr.Textbox(label="Prompt")