|
import gradio as gr |
|
import numpy as np |
|
import torch |
|
import spaces |
|
from diffusers import FluxPipeline, FluxTransformer2DModel |
|
from diffusers.utils import export_to_gif |
|
from huggingface_hub import hf_hub_download |
|
from PIL import Image |
|
import uuid |
|
import random |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
if torch.cuda.is_available(): |
|
torch_dtype = torch.bfloat16 |
|
else: |
|
torch_dtype = torch.float32 |
|
|
|
def split_image(input_image, num_splits=4): |
|
|
|
output_images = [] |
|
|
|
|
|
for i in range(num_splits): |
|
left = i * 320 |
|
right = (i + 1) * 320 |
|
box = (left, 0, right, 320) |
|
output_images.append(input_image.crop(box)) |
|
|
|
return output_images |
|
|
|
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch_dtype).to(device) |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
|
|
@spaces.GPU |
|
def infer(prompt, seed=1, randomize_seed=False, num_inference_steps=28): |
|
print('entered the function') |
|
prompt_template = f"A side by side 4 frame image showing high quality consecutive stills from a looped gif animation moving from left to right. The scene has motion. The stills are of {prompt}" |
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
|
|
generator = torch.Generator().manual_seed(seed) |
|
|
|
image = pipe( |
|
prompt=prompt_template, |
|
num_inference_steps=num_inference_steps, |
|
num_images_per_prompt=1, |
|
generator=generator, |
|
height=320, |
|
width=1280 |
|
).images[0] |
|
|
|
gif_name = f"{uuid.uuid4().hex}-flux.gif" |
|
|
|
export_to_gif(split_image(image, 4), gif_name, fps=4) |
|
|
|
return gif_name, image, seed |
|
|
|
examples = [ |
|
"a cute cat raising a sign that reads \"Flux does Video?\"", |
|
"Chris Rock eating pizza", |
|
"A flying saucer over the white house", |
|
] |
|
|
|
css=""" |
|
#col-container { |
|
margin: 0 auto; |
|
max-width: 640px; |
|
} |
|
#strip{ |
|
max-height: 160px |
|
} |
|
""" |
|
|
|
with gr.Blocks(css=css) as demo: |
|
|
|
with gr.Column(elem_id="col-container"): |
|
gr.Markdown(f""" |
|
# FLUX Gif Animations |
|
Generate gifs with FLUX [dev]. Concept idea by [fofr](https://x.com/fofrAI). Diffusers implementation by [Dhruv](_DhruvNair_) |
|
""") |
|
|
|
with gr.Row(): |
|
|
|
prompt = gr.Text( |
|
label="Prompt", |
|
show_label=False, |
|
max_lines=1, |
|
placeholder="Enter your prompt", |
|
container=False, |
|
) |
|
|
|
run_button = gr.Button("Run", scale=0) |
|
|
|
result = gr.Image(label="Result", show_label=False) |
|
result_full = gr.Image(label="Gif Strip", elem_id="strip") |
|
with gr.Accordion("Advanced Settings", open=False): |
|
|
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
) |
|
|
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
|
|
num_inference_steps = gr.Slider( |
|
label="Number of inference steps", |
|
minimum=1, |
|
maximum=32, |
|
step=1, |
|
value=28, |
|
) |
|
|
|
|
|
gr.Examples( |
|
examples = examples, |
|
inputs = [prompt], |
|
outputs = [result, result_full, seed], |
|
fn=infer, |
|
cache_examples="lazy" |
|
) |
|
|
|
gr.on( |
|
triggers=[run_button.click, prompt.submit], |
|
fn = infer, |
|
inputs = [prompt, seed, randomize_seed, num_inference_steps], |
|
outputs = [result, result_full, seed] |
|
) |
|
|
|
demo.queue().launch() |