guardiancc's picture
Update app.py
194b0bd verified
import gradio as gr
import numpy as np
import torch
import spaces
from diffusers import FluxPipeline, FluxTransformer2DModel
from diffusers.utils import export_to_gif
from huggingface_hub import hf_hub_download
from PIL import Image
import uuid
import random
device = "cuda" if torch.cuda.is_available() else "cpu"
if torch.cuda.is_available():
torch_dtype = torch.bfloat16
else:
torch_dtype = torch.float32
def split_image(input_image, num_splits=4):
# Create a list to store the output images
output_images = []
# Split the image into four 256x256 sections
for i in range(num_splits):
left = i * 320
right = (i + 1) * 320
box = (left, 0, right, 320)
output_images.append(input_image.crop(box))
return output_images
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch_dtype).to(device)
MAX_SEED = np.iinfo(np.int32).max
@spaces.GPU
def infer(prompt, seed=1, randomize_seed=False, num_inference_steps=28):
print('entered the function')
prompt_template = f"A side by side 4 frame image showing high quality consecutive stills from a looped gif animation moving from left to right. The scene has motion. The stills are of {prompt}"
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=prompt_template,
num_inference_steps=num_inference_steps,
num_images_per_prompt=1,
generator=generator,
height=320,
width=1280
).images[0]
gif_name = f"{uuid.uuid4().hex}-flux.gif"
export_to_gif(split_image(image, 4), gif_name, fps=4)
return gif_name, image, seed
examples = [
"a cute cat raising a sign that reads \"Flux does Video?\"",
"Chris Rock eating pizza",
"A flying saucer over the white house",
]
css="""
#col-container {
margin: 0 auto;
max-width: 640px;
}
#strip{
max-height: 160px
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# FLUX Gif Animations
Generate gifs with FLUX [dev]. Concept idea by [fofr](https://x.com/fofrAI). Diffusers implementation by [Dhruv](_DhruvNair_)
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
result_full = gr.Image(label="Gif Strip", elem_id="strip")
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=32,
step=1,
value=28,
)
gr.Examples(
examples = examples,
inputs = [prompt],
outputs = [result, result_full, seed],
fn=infer,
cache_examples="lazy"
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn = infer,
inputs = [prompt, seed, randomize_seed, num_inference_steps],
outputs = [result, result_full, seed]
)
demo.queue().launch()