|
import gradio as gr |
|
import spaces |
|
import torch |
|
from diffusers import AutoencoderKL, TCDScheduler |
|
from diffusers.models.model_loading_utils import load_state_dict |
|
from gradio_imageslider import ImageSlider |
|
from huggingface_hub import hf_hub_download |
|
|
|
from controlnet_union import ControlNetModel_Union |
|
from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline |
|
|
|
MODELS = { |
|
"RealVisXL V5.0 Lightning": "SG161222/RealVisXL_V5.0_Lightning", |
|
} |
|
|
|
config_file = hf_hub_download( |
|
"xinsir/controlnet-union-sdxl-1.0", |
|
filename="config_promax.json", |
|
) |
|
|
|
config = ControlNetModel_Union.load_config(config_file) |
|
controlnet_model = ControlNetModel_Union.from_config(config) |
|
model_file = hf_hub_download( |
|
"xinsir/controlnet-union-sdxl-1.0", |
|
filename="diffusion_pytorch_model_promax.safetensors", |
|
) |
|
state_dict = load_state_dict(model_file) |
|
model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model( |
|
controlnet_model, state_dict, model_file, "xinsir/controlnet-union-sdxl-1.0" |
|
) |
|
model.to(device="cuda", dtype=torch.float16) |
|
|
|
vae = AutoencoderKL.from_pretrained( |
|
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16 |
|
).to("cuda") |
|
|
|
pipe = StableDiffusionXLFillPipeline.from_pretrained( |
|
"SG161222/RealVisXL_V5.0_Lightning", |
|
torch_dtype=torch.float16, |
|
vae=vae, |
|
controlnet=model, |
|
variant="fp16", |
|
).to("cuda") |
|
|
|
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config) |
|
|
|
prompt = "high quality" |
|
( |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds, |
|
) = pipe.encode_prompt(prompt, "cuda", True) |
|
|
|
|
|
@spaces.GPU |
|
def fill_image(image, model_selection): |
|
source = image["background"] |
|
mask = image["layers"][0] |
|
|
|
alpha_channel = mask.split()[3] |
|
binary_mask = alpha_channel.point(lambda p: p > 0 and 255) |
|
cnet_image = source.copy() |
|
cnet_image.paste(0, (0, 0), binary_mask) |
|
|
|
for image in pipe( |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, |
|
image=cnet_image, |
|
): |
|
yield image, cnet_image |
|
|
|
image = image.convert("RGBA") |
|
cnet_image.paste(image, (0, 0), binary_mask) |
|
|
|
yield source, cnet_image |
|
|
|
|
|
def clear_result(): |
|
return gr.update(value=None) |
|
|
|
|
|
title = """<h1 align="center">Diffusers Image Fill</h1> |
|
<div align="center">Draw the mask over the subject you want to erase or change.</div> |
|
""" |
|
|
|
with gr.Blocks() as demo: |
|
gr.HTML(title) |
|
with gr.Row(): |
|
model_selection = gr.Dropdown( |
|
choices=list(MODELS.keys()), |
|
value="RealVisXL V5.0 Lightning", |
|
label="Model", |
|
) |
|
run_button = gr.Button("Generate") |
|
|
|
with gr.Row(): |
|
input_image = gr.ImageMask( |
|
type="pil", |
|
label="Input Image", |
|
crop_size=(1024, 1024), |
|
layers=False, |
|
sources=["upload"], |
|
) |
|
|
|
result = ImageSlider( |
|
interactive=False, |
|
label="Generated Image", |
|
) |
|
|
|
run_button.click( |
|
fn=clear_result, |
|
inputs=None, |
|
outputs=result, |
|
).then( |
|
fn=fill_image, |
|
inputs=[input_image, model_selection], |
|
outputs=result, |
|
) |
|
|
|
|
|
demo.launch(share=False) |
|
|