guangkaixu commited on
Commit
5f241ea
·
1 Parent(s): 3ef7e45
Files changed (2) hide show
  1. README.md +1 -1
  2. app.py +2 -4
README.md CHANGED
@@ -1,5 +1,5 @@
1
  ---
2
- title: Diffusion Models Trained with Large Data Are Transferable Visual Models
3
  emoji: ⚡
4
  colorFrom: indigo
5
  colorTo: red
 
1
  ---
2
+ title: GenPercept
3
  emoji: ⚡
4
  colorFrom: indigo
5
  colorTo: red
app.py CHANGED
@@ -27,8 +27,6 @@ import functools
27
  import os
28
  import tempfile
29
  import warnings
30
- import sys
31
- sys.path.append("../")
32
 
33
  import gradio as gr
34
  import numpy as np
@@ -273,8 +271,8 @@ def main():
273
 
274
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
275
 
276
- vae = AutoencoderKL.from_pretrained("./", subfolder='vae')
277
- unet = UNet2DConditionModel.from_pretrained('./', subfolder="unet")
278
  empty_text_embed = torch.from_numpy(np.load("./empty_text_embed.npy")).to(device, dtype)[None] # [1, 77, 1024]
279
 
280
  pipe = GenPerceptPipeline(vae=vae,
 
27
  import os
28
  import tempfile
29
  import warnings
 
 
30
 
31
  import gradio as gr
32
  import numpy as np
 
271
 
272
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
273
 
274
+ vae = AutoencoderKL.from_pretrained("guangkaixu/GenPercept", subfolder='vae')
275
+ unet = UNet2DConditionModel.from_pretrained('guangkaixu/GenPercept', subfolder="unet")
276
  empty_text_embed = torch.from_numpy(np.load("./empty_text_embed.npy")).to(device, dtype)[None] # [1, 77, 1024]
277
 
278
  pipe = GenPerceptPipeline(vae=vae,