gsvann commited on
Commit
e5dda8b
·
1 Parent(s): dbfdf1a

Update for Russian app.py

Browse files
Files changed (1) hide show
  1. app.py +50 -23
app.py CHANGED
@@ -1,49 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
  import numpy as np
3
  import torch
 
 
4
  from datasets import load_dataset
5
 
6
- from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
7
-
8
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
10
 
11
- # load speech translation checkpoint
12
- asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
-
14
- # load text-to-speech checkpoint and speaker embeddings
15
- processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
16
 
17
- model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
18
- vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
19
-
20
- embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
21
- speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
22
 
 
 
 
 
 
23
 
24
- def translate(audio):
25
- outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
26
- return outputs["text"]
 
27
 
 
 
 
 
28
 
29
  def synthesise(text):
30
- inputs = processor(text=text, return_tensors="pt")
31
- speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
 
 
 
 
 
32
  return speech.cpu()
33
 
34
 
35
  def speech_to_speech_translation(audio):
36
- translated_text = translate(audio)
37
- synthesised_speech = synthesise(translated_text)
 
38
  synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
39
- return 16000, synthesised_speech
40
 
41
 
42
  title = "Cascaded STST"
43
  description = """
44
- Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
45
- [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
46
-
 
47
  ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
48
  """
49
 
 
1
+ "Задание 3"
2
+
3
+ !pip install datasets #>=2.6.1
4
+ !pip install git+https://github.com/huggingface/transformers
5
+ !pip -q install gradio==3.28.3
6
+ !pip install phonemizer
7
+ !pip install py-espeak-ng
8
+
9
+ %pip install sentencepiece
10
+ %pip install --pre ekorpkit
11
+
12
  import gradio as gr
13
  import numpy as np
14
  import torch
15
+ import espeakng
16
+ import sentencepiece
17
  from datasets import load_dataset
18
 
19
+ from transformers import pipeline, MarianMTModel, MarianTokenizer, VitsModel, VitsTokenizer
 
20
 
21
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
22
 
23
+ import phonemizer
24
+ model_wav2vec = 'facebook/wav2vec2-lv-60-espeak-cv-ft'
25
+ asr_pipe = pipeline("automatic-speech-recognition", model=model_wav2vec, device=device)
 
 
26
 
27
+ # from speech to text
28
+ def translate_audio(audio):
29
+ outputs = asr_pipe(audio, max_new_tokens=256,
30
+ generate_kwargs={"task": "translate"})
31
+ return outputs["text"]
32
 
33
+ # translation
34
+ def translate_text(text, from_language, target_language): #to English -mul en, to Russian - en ru
35
+ model_name = f'Helsinki-NLP/opus-mt-{from_language}-{target_language}'
36
+ tokenizer = MarianTokenizer.from_pretrained(model_name)
37
+ model = MarianMTModel.from_pretrained(model_name)
38
 
39
+ inputs = tokenizer.encode(text, return_tensors="pt")
40
+ outputs = model.generate(inputs, num_beams=4, max_length=50, early_stopping=True)
41
+ translated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
42
+ return translated_text
43
 
44
+ # load text-to-speech checkpoint
45
+ #model = pipeline("text-to-speech", model="voxxer/speecht5_finetuned_commonvoice_ru_translit")
46
+ model = VitsModel.from_pretrained("voxxer/speecht5_finetuned_commonvoice_ru_translit")
47
+ tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-rus")
48
 
49
  def synthesise(text):
50
+ translated_text = translate_text(text, 'mul', 'en')
51
+ translated_text = translate_text(translate_text, 'en', 'ru')
52
+ inputs = tokenizer(translated_text, return_tensors="pt")
53
+ input_ids = inputs["input_ids"]
54
+ with torch.no_grad():
55
+ outputs = model(input_ids)
56
+ speech = outputs["waveform"]
57
  return speech.cpu()
58
 
59
 
60
  def speech_to_speech_translation(audio):
61
+ text_from_audio = translate_audio(audio)
62
+ print(translated_text)
63
+ synthesised_speech = synthesise(text_from_audio)
64
  synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
65
+ return 16000, synthesised_speech[0]
66
 
67
 
68
  title = "Cascaded STST"
69
  description = """
70
+ * В начале происходит распознавание речи с помощью модели facebook/wav2vec2-lv-60-espeak-cv-ft и на выходе получается текст на любом из 60 языков.
71
+ * Затем полученный текст переводится сначала на английский с помощью Helsinki-NLP/opus-mt-mul-en, а потом на русский с помощью Helsinki-NLP/opus-mt-en-ru
72
+ * На последнем шаге полученный текст озвучивается с помощью fine-tune-говой версии microsoft/speecht5_tts - voxxer/speecht5_finetuned_commonvoice_ru_translit
73
+ Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Russian. Demo uses facebook/mms-tts-rus model for text-to-speech:
74
  ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
75
  """
76