Spaces:
Running
Running
import gradio as gr | |
import tensorflow as tf | |
import numpy as np | |
import cv2 | |
# Load your trained model | |
model = tf.keras.models.load_model("model_244.h5") | |
def predict_image(image): | |
img = cv2.resize(image, (244, 244)) | |
img = img.astype(np.float32) / 255.0 | |
img = np.expand_dims(img, axis=0) | |
p = model.predict(img)[0][0] | |
risk = "High" if p > 0.7 else "Medium" if p > 0.4 else "Low" | |
return f"Risk: {risk} (Probability: {p:.3f})" | |
iface = gr.Interface( | |
fn=predict_image, | |
inputs=gr.Image(type="numpy"), | |
outputs="text", | |
title="Cancer Risk Detector (244×244)", | |
description="Upload an image to get a cancer risk prediction." | |
) | |
if __name__ == "__main__": | |
iface.launch() | |