Clear audio recording after submission, switch to distil-whisper model from transformers for speech to text.
Browse files- app.py +28 -7
- requirements.txt +2 -1
app.py
CHANGED
@@ -2,7 +2,8 @@ import os
|
|
2 |
from pathlib import Path
|
3 |
import gradio as gr
|
4 |
import re
|
5 |
-
import
|
|
|
6 |
import requests
|
7 |
|
8 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
@@ -10,6 +11,29 @@ HF_TOKEN = os.getenv("HF_TOKEN")
|
|
10 |
API_URL = "https://api-inference.huggingface.co/models/HuggingFaceH4/zephyr-7b-beta"
|
11 |
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
code_pattern = r'```python\n(.*?)```'
|
14 |
|
15 |
starting_app_code = """import gradio as gr
|
@@ -140,12 +164,9 @@ def generate_text(code, prompt):
|
|
140 |
return assistant_reply, new_code
|
141 |
|
142 |
|
143 |
-
model = whisper.load_model('medium')
|
144 |
-
|
145 |
-
|
146 |
def transcribe(audio):
|
147 |
-
result =
|
148 |
-
return result["text"]
|
149 |
|
150 |
|
151 |
def copy_notify(code):
|
@@ -173,7 +194,7 @@ with gr.Blocks() as demo:
|
|
173 |
update_btn = gr.Button("Update App", variant="primary")
|
174 |
update_btn.click(None, inputs=code_area, outputs=None, _js=update_iframe_js)
|
175 |
in_prompt.submit(generate_text, [code_area, in_prompt], [out_text, code_area]).then(None, inputs=code_area, outputs=None, _js=update_iframe_js)
|
176 |
-
in_audio.stop_recording(transcribe, [in_audio], [in_prompt]).then(generate_text, [code_area, in_prompt], [out_text, code_area]).then(None, inputs=code_area, outputs=None, _js=update_iframe_js)
|
177 |
with gr.Row():
|
178 |
with gr.Column():
|
179 |
gr.Markdown("## 3. Export your app to share!")
|
|
|
2 |
from pathlib import Path
|
3 |
import gradio as gr
|
4 |
import re
|
5 |
+
import torch
|
6 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
7 |
import requests
|
8 |
|
9 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
|
|
11 |
API_URL = "https://api-inference.huggingface.co/models/HuggingFaceH4/zephyr-7b-beta"
|
12 |
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
|
13 |
|
14 |
+
def init_speech_to_text_model():
|
15 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
16 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
17 |
+
|
18 |
+
model_id = "distil-whisper/distil-large-v2"
|
19 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
20 |
+
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
21 |
+
)
|
22 |
+
model.to(device)
|
23 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
24 |
+
return pipeline(
|
25 |
+
"automatic-speech-recognition",
|
26 |
+
model=model,
|
27 |
+
tokenizer=processor.tokenizer,
|
28 |
+
feature_extractor=processor.feature_extractor,
|
29 |
+
max_new_tokens=128,
|
30 |
+
torch_dtype=torch_dtype,
|
31 |
+
device=device,
|
32 |
+
)
|
33 |
+
|
34 |
+
|
35 |
+
whisper_pipe = init_speech_to_text_model()
|
36 |
+
|
37 |
code_pattern = r'```python\n(.*?)```'
|
38 |
|
39 |
starting_app_code = """import gradio as gr
|
|
|
164 |
return assistant_reply, new_code
|
165 |
|
166 |
|
|
|
|
|
|
|
167 |
def transcribe(audio):
|
168 |
+
result = whisper_pipe(audio)
|
169 |
+
return result["text"], None
|
170 |
|
171 |
|
172 |
def copy_notify(code):
|
|
|
194 |
update_btn = gr.Button("Update App", variant="primary")
|
195 |
update_btn.click(None, inputs=code_area, outputs=None, _js=update_iframe_js)
|
196 |
in_prompt.submit(generate_text, [code_area, in_prompt], [out_text, code_area]).then(None, inputs=code_area, outputs=None, _js=update_iframe_js)
|
197 |
+
in_audio.stop_recording(transcribe, [in_audio], [in_prompt, in_audio]).then(generate_text, [code_area, in_prompt], [out_text, code_area]).then(None, inputs=code_area, outputs=None, _js=update_iframe_js)
|
198 |
with gr.Row():
|
199 |
with gr.Column():
|
200 |
gr.Markdown("## 3. Export your app to share!")
|
requirements.txt
CHANGED
@@ -1 +1,2 @@
|
|
1 |
-
|
|
|
|
1 |
+
torch
|
2 |
+
transformers
|