gsarathkumar
commited on
Commit
•
d7fc27a
1
Parent(s):
d01ee7a
initial commit
Browse files- .env +1 -0
- conversational_with_file.py +91 -0
- faiss_index/index.faiss +0 -0
- faiss_index/index.pkl +3 -0
- requirements.txt +10 -0
.env
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
OPENAI_API_KEY='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'
|
conversational_with_file.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
3 |
+
import os
|
4 |
+
from langchain import OpenAI
|
5 |
+
from langchain.embeddings import OpenAIEmbeddings
|
6 |
+
from langchain.vectorstores import FAISS
|
7 |
+
from langchain.chains.question_answering import load_qa_chain
|
8 |
+
from langchain.prompts import PromptTemplate
|
9 |
+
from dotenv import load_dotenv
|
10 |
+
from langchain.document_loaders import TextLoader
|
11 |
+
import pickle
|
12 |
+
|
13 |
+
load_dotenv()
|
14 |
+
embeddings = OpenAIEmbeddings(openai_api_key='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')
|
15 |
+
new_db = FAISS.load_local("faiss_index", embeddings)
|
16 |
+
|
17 |
+
|
18 |
+
|
19 |
+
def get_text_chunks(text):
|
20 |
+
text_splitter = RecursiveCharacterTextSplitter(separators=["\n\n", "\n", " "],
|
21 |
+
chunk_size = 200,
|
22 |
+
chunk_overlap=50, length_function=len)
|
23 |
+
chunks = text_splitter.split_documents(text)
|
24 |
+
return chunks
|
25 |
+
|
26 |
+
|
27 |
+
# def get_vector_store(text_chunks):
|
28 |
+
# embeddings = OpenAIEmbeddings(openai_api_key='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')
|
29 |
+
# vectorstore_openai = FAISS.from_documents(text_chunks, embeddings)
|
30 |
+
# vectorstore_openai.save_local("faiss_index")
|
31 |
+
|
32 |
+
|
33 |
+
def get_conversational_chain():
|
34 |
+
prompt_template = """
|
35 |
+
Answer the question as breif as possible from the provided context, make sure to provide all the details, if the answer is not in
|
36 |
+
provided context just say, "answer is not available in the context", don't provide the wrong answer.
|
37 |
+
Answer the question as canadian citizen as buyproperly customer care \n\n
|
38 |
+
Context:\n {context}?\n
|
39 |
+
Question: \n{question}\n
|
40 |
+
|
41 |
+
Answer:
|
42 |
+
"""
|
43 |
+
|
44 |
+
model = OpenAI(temperature=0.6, max_tokens=500, model='gpt-3.5-turbo-instruct')
|
45 |
+
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
|
46 |
+
chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
|
47 |
+
|
48 |
+
return chain
|
49 |
+
|
50 |
+
|
51 |
+
|
52 |
+
def user_input(user_question):
|
53 |
+
docs = new_db.similarity_search(user_question)
|
54 |
+
print('loaded from docs')
|
55 |
+
chain = get_conversational_chain()
|
56 |
+
|
57 |
+
response = chain(
|
58 |
+
{"input_documents": docs, "question": user_question}
|
59 |
+
, return_only_outputs=True)
|
60 |
+
|
61 |
+
print(response)
|
62 |
+
st.write("Reply: ", response["output_text"])
|
63 |
+
|
64 |
+
|
65 |
+
def main():
|
66 |
+
st.set_page_config("Chat with BuyProperly AI Assistant")
|
67 |
+
|
68 |
+
# with st.sidebar:
|
69 |
+
# st.title("Menu:")
|
70 |
+
# input_file_path = st.sidebar.text_input("Enter the path of the text file:")
|
71 |
+
# process_url_clicked = st.sidebar.button("Process URLs")
|
72 |
+
# if process_url_clicked:
|
73 |
+
# #print('clicked')
|
74 |
+
# loader = TextLoader(input_file_path, encoding='UTF-8')
|
75 |
+
# raw_text = loader.load()
|
76 |
+
# #print(raw_text)
|
77 |
+
# text_chunks = get_text_chunks(raw_text)
|
78 |
+
# get_vector_store(text_chunks)
|
79 |
+
# st.success("Done")
|
80 |
+
|
81 |
+
user_question = st.text_input("Ask a Question:")
|
82 |
+
if st.button("Submit & Process"):
|
83 |
+
with st.spinner("Processing..."):
|
84 |
+
print('user_question response', user_question)
|
85 |
+
if user_question:
|
86 |
+
print('entered the user question')
|
87 |
+
user_input(user_question)
|
88 |
+
|
89 |
+
|
90 |
+
if __name__ == "__main__":
|
91 |
+
main()
|
faiss_index/index.faiss
ADDED
Binary file (227 kB). View file
|
|
faiss_index/index.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:10a1eabe666dfd9ccdea0e307693d0e2a7df577915b0281b636e4e7b5bea8b31
|
3 |
+
size 9917
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
langchain==0.0.284
|
2 |
+
python-dotenv==1.0.0
|
3 |
+
streamlit==1.22.0
|
4 |
+
unstructured==0.9.2
|
5 |
+
tiktoken==0.4.0
|
6 |
+
faiss-cpu==1.7.4
|
7 |
+
libmagic==1.0
|
8 |
+
python-magic==0.4.27
|
9 |
+
python-magic-bin==0.4.14
|
10 |
+
OpenAI == 0.28.0
|