|
import timm |
|
import gradio as gr |
|
from fastai.vision.all import * |
|
|
|
learn = load_learner('cat.pkl') |
|
labels = learn.dls.vocab |
|
|
|
|
|
def classify_image(img): |
|
img = PILImage.create(img) |
|
pred, pred_idx, probs = learn.predict(img) |
|
return {labels[i]: float(probs[i]) for i in range(len(labels))} |
|
|
|
|
|
images = gr.inputs.Image(shape=(300, 300)) |
|
outputs = gr.outputs.Label(num_top_classes=3) |
|
|
|
examples = ['british-shorthair.jpg', |
|
'maine-coon.jpg', 'european-shorthair.jpg'] |
|
|
|
interface = gr.Interface(fn=classify_image, inputs=images, |
|
outputs=outputs, examples=examples) |
|
|
|
interface.launch(inline=False) |
|
|