|
|
|
import gradio as gr |
|
import joblib |
|
import pandas as pd |
|
import numpy as np |
|
from keras.models import load_model |
|
|
|
|
|
|
|
|
|
cat_data_columns = joblib.load('cat_data_columns.joblib') |
|
encoder = joblib.load('encoder.joblib') |
|
|
|
model = load_model('DNN_model.h5') |
|
|
|
scaler = joblib.load('scaler.joblib') |
|
|
|
|
|
|
|
|
|
|
|
def pred(HS, PS, EA, SH, SQPP): |
|
EA = encoder.transform([EA])[0] |
|
x_new = np.array([HS, PS, EA, SH, SQPP]) |
|
x_new = x_new.reshape(1, -1) |
|
x_new = scaler.transform(x_new) |
|
y_pred = model.predict(x_new) |
|
y_pred = np.round(y_pred[0], 2)[0] |
|
|
|
return f"la performance de cet etudiant est: {str(y_pred)}" |
|
|
|
|
|
def pred_csv(file): |
|
df = pd.read_csv(file) |
|
|
|
prediction = [] |
|
|
|
for row in df.iloc[:, :].values: |
|
prediction.append(pred(row[0], row[1], encoder.transform([row[2][0]]), row[3])) |
|
|
|
df['Performance Index'] = prediction |
|
df.to_csv('perfo_etud.csv', index= False) |
|
return 'perfo_etud.csv' |
|
|
|
|
|
demo = gr.Blocks(theme= gr.themes.Origin()) |
|
|
|
inputs = [ |
|
gr.Number(label= 'Hours Studied'), |
|
gr.Number(label= 'Previous Scores'), |
|
gr.Radio(choices= ['Yes', 'No'], label= 'Extracurricular Activities'), |
|
gr.Number(label= 'Sleep Hours'), |
|
gr.Number(label= 'Sample Question Papers Practiced') |
|
] |
|
outputs = gr.Textbox(label='Performance Index') |
|
|
|
interface1 = gr.Interface(fn= pred, |
|
inputs= inputs, |
|
outputs= outputs, |
|
title = "Predire les performance de l'etudiant en saisant les données", |
|
description= """Cette modele permet de predire les performation d'un etudiant a partir de quelques un de ces informations""" |
|
) |
|
interface2 = gr.Interface( |
|
fn = pred_csv, |
|
inputs = gr.File(label= 'Telecharger le document csv'), |
|
outputs= gr.File(label= 'Telecharger le documents csv'), |
|
title= "Predictions multiple en inserant un fichier csv", |
|
description= """Cette modele permet de predire les performation d'un etudiant a partir de quelques un de ces informations""" |
|
) |
|
with demo: |
|
gr.TabbedInterface([interface1, interface2], ['Predictions simple', 'Predictions multiple']) |
|
|
|
demo.launch() |
|
|