Spaces:
Sleeping
Sleeping
import numpy as np | |
import matplotlib.pyplot as plt | |
def score_histogram(scores_true, scores_pred, ax=None, sz=10): | |
make_fig = ax is None | |
if make_fig: | |
fig, ax = plt.subplots(1, 1, figsize=(sz, sz)) | |
bins = np.linspace(0, 1, 100) | |
pos_scores = scores_pred[scores_true == 1] | |
neg_scores = scores_pred[scores_true == 0] | |
ax.hist(pos_scores, bins=bins, histtype="step", label="Jet", color=(0, 0.5, 0)) | |
ax.hist(neg_scores, bins=bins, histtype="step", label="Noise", color=(0.6, 0.6, 0.6)) | |
ax.set_yscale("log") | |
ax.set_xlabel("Classifier score") | |
ax.legend() | |
ax.grid(1) | |
if make_fig: | |
fig.tight_layout() | |
return fig | |
from sklearn.metrics import confusion_matrix | |
def confusion_matrix_plot(ytrue, ypred, ax): | |
cm = confusion_matrix(ytrue.int(), ypred.int()) | |
ax.imshow(cm, cmap="Blues") | |
ax.set_xlabel("Predicted label") | |
ax.set_ylabel("True label") | |
ax.set_xticks([0, 1]) | |
ax.set_yticks([0, 1]) | |
ax.set_xticklabels(["Noise", "Jet"]) | |
ax.set_yticklabels(["Noise", "Jet"]) | |
for i in range(2): | |
for j in range(2): | |
ax.text(j, i, cm[i, j], ha="center", va="center", color="black") | |
def per_pt_score_histogram(y_true, y_pred, pt): | |
pt_bins = [[0, 1], [1, 10], [10, 1000]] | |
sz = 4 | |
fig, ax = plt.subplots(len(pt_bins), 1, figsize=(sz, sz*len(pt_bins))) | |
for i, (pt_min, pt_max) in enumerate(pt_bins): | |
mask = (pt > pt_min) & (pt < pt_max) | |
score_histogram(y_true[mask], y_pred[mask], ax=ax[i]) | |
ax[i].set_title(f"pt $\in$ ({pt_min}, {pt_max})") | |
fig.tight_layout() | |
return fig | |
def plot_roc_curve(y_true, y_pred): | |
from sklearn.metrics import roc_curve | |
fpr, tpr, _ = roc_curve(y_true, y_pred) | |
fig, ax = plt.subplots(1, 1, figsize=(5, 5)) | |
ax.plot(fpr, tpr) | |
ax.set_xlabel("False positive rate") | |
ax.set_ylabel("True positive rate") | |
ax.set_title("ROC curve") | |
ax.grid(1) | |
return fig | |