Spaces:
Runtime error
Runtime error
update library
Browse files- survey_analytics_library.py +0 -150
survey_analytics_library.py
CHANGED
|
@@ -1,20 +1,7 @@
|
|
| 1 |
|
| 2 |
# imports
|
| 3 |
import pandas as pd
|
| 4 |
-
import numpy as np
|
| 5 |
-
import streamlit as st
|
| 6 |
-
from tqdm.notebook import tqdm
|
| 7 |
-
import matplotlib.pyplot as plt
|
| 8 |
-
import plotly.express as px
|
| 9 |
-
|
| 10 |
-
from sklearn.cluster import KMeans
|
| 11 |
-
from sklearn.metrics import silhouette_score
|
| 12 |
-
|
| 13 |
-
import zipfile
|
| 14 |
-
from xml.etree.cElementTree import XML
|
| 15 |
-
|
| 16 |
import re
|
| 17 |
-
from nltk.corpus import stopwords
|
| 18 |
|
| 19 |
|
| 20 |
|
|
@@ -82,143 +69,6 @@ def clean_text(text_string, list_of_replacements, lowercase=True, ignorecase=Fal
|
|
| 82 |
|
| 83 |
|
| 84 |
|
| 85 |
-
# remove stopwords from tokens
|
| 86 |
-
def remove_stopwords(tokens, language='english'):
|
| 87 |
-
'''
|
| 88 |
-
remove stopwords from tokens using list comprehension
|
| 89 |
-
default to using english stopwords
|
| 90 |
-
arguments:
|
| 91 |
-
tokens (list): list of token#s, output of word_tokenize()
|
| 92 |
-
language (str): default to english
|
| 93 |
-
returns:
|
| 94 |
-
a list of tokens without stopwords
|
| 95 |
-
'''
|
| 96 |
-
# define stopwords and store as a set
|
| 97 |
-
stopwords_set = set(stopwords.words(language))
|
| 98 |
-
# check if word is in list of stopwords
|
| 99 |
-
# returns a list of words not found in list of stopwords
|
| 100 |
-
stopwords_removed = [word for word in tokens if word not in stopwords_set]
|
| 101 |
-
# return
|
| 102 |
-
return stopwords_removed
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
import itertools
|
| 107 |
-
from typing import List
|
| 108 |
-
import plotly.graph_objects as go
|
| 109 |
-
from plotly.subplots import make_subplots
|
| 110 |
-
def visualize_barchart_titles(topic_model,
|
| 111 |
-
topics: List[int] = None,
|
| 112 |
-
subplot_titles: List[str] = None,
|
| 113 |
-
top_n_topics: int = 8,
|
| 114 |
-
n_words: int = 5,
|
| 115 |
-
width: int = 250,
|
| 116 |
-
height: int = 250) -> go.Figure:
|
| 117 |
-
""" Visualize a barchart of selected topics
|
| 118 |
-
|
| 119 |
-
Arguments:
|
| 120 |
-
topic_model: A fitted BERTopic instance.
|
| 121 |
-
topics: A selection of topics to visualize.
|
| 122 |
-
top_n_topics: Only select the top n most frequent topics.
|
| 123 |
-
n_words: Number of words to show in a topic
|
| 124 |
-
width: The width of each figure.
|
| 125 |
-
height: The height of each figure.
|
| 126 |
-
|
| 127 |
-
Returns:
|
| 128 |
-
fig: A plotly figure
|
| 129 |
-
|
| 130 |
-
Usage:
|
| 131 |
-
|
| 132 |
-
To visualize the barchart of selected topics
|
| 133 |
-
simply run:
|
| 134 |
-
|
| 135 |
-
```python
|
| 136 |
-
topic_model.visualize_barchart()
|
| 137 |
-
```
|
| 138 |
-
|
| 139 |
-
Or if you want to save the resulting figure:
|
| 140 |
-
|
| 141 |
-
```python
|
| 142 |
-
fig = topic_model.visualize_barchart()
|
| 143 |
-
fig.write_html("path/to/file.html")
|
| 144 |
-
```
|
| 145 |
-
<iframe src="../../getting_started/visualization/bar_chart.html"
|
| 146 |
-
style="width:1100px; height: 660px; border: 0px;""></iframe>
|
| 147 |
-
"""
|
| 148 |
-
colors = itertools.cycle(["#D55E00", "#0072B2", "#CC79A7", "#E69F00", "#56B4E9", "#009E73", "#F0E442"])
|
| 149 |
-
|
| 150 |
-
# Select topics based on top_n and topics args
|
| 151 |
-
freq_df = topic_model.get_topic_freq()
|
| 152 |
-
freq_df = freq_df.loc[freq_df.Topic != -1, :]
|
| 153 |
-
if topics is not None:
|
| 154 |
-
topics = list(topics)
|
| 155 |
-
elif top_n_topics is not None:
|
| 156 |
-
topics = sorted(freq_df.Topic.to_list()[:top_n_topics])
|
| 157 |
-
else:
|
| 158 |
-
topics = sorted(freq_df.Topic.to_list()[0:6])
|
| 159 |
-
|
| 160 |
-
# Initialize figure
|
| 161 |
-
if subplot_titles is None:
|
| 162 |
-
subplot_titles = [f"Topic {topic}" for topic in topics]
|
| 163 |
-
else:
|
| 164 |
-
subplot_titles = subplot_titles
|
| 165 |
-
columns = 4
|
| 166 |
-
rows = int(np.ceil(len(topics) / columns))
|
| 167 |
-
fig = make_subplots(rows=rows,
|
| 168 |
-
cols=columns,
|
| 169 |
-
shared_xaxes=False,
|
| 170 |
-
horizontal_spacing=.1,
|
| 171 |
-
vertical_spacing=.4 / rows if rows > 1 else 0,
|
| 172 |
-
subplot_titles=subplot_titles)
|
| 173 |
-
|
| 174 |
-
# Add barchart for each topic
|
| 175 |
-
row = 1
|
| 176 |
-
column = 1
|
| 177 |
-
for topic in topics:
|
| 178 |
-
words = [word + " " for word, _ in topic_model.get_topic(topic)][:n_words][::-1]
|
| 179 |
-
scores = [score for _, score in topic_model.get_topic(topic)][:n_words][::-1]
|
| 180 |
-
|
| 181 |
-
fig.add_trace(
|
| 182 |
-
go.Bar(x=scores,
|
| 183 |
-
y=words,
|
| 184 |
-
orientation='h',
|
| 185 |
-
marker_color=next(colors)),
|
| 186 |
-
row=row, col=column)
|
| 187 |
-
|
| 188 |
-
if column == columns:
|
| 189 |
-
column = 1
|
| 190 |
-
row += 1
|
| 191 |
-
else:
|
| 192 |
-
column += 1
|
| 193 |
-
|
| 194 |
-
# Stylize graph
|
| 195 |
-
fig.update_layout(
|
| 196 |
-
template="plotly_white",
|
| 197 |
-
showlegend=False,
|
| 198 |
-
title={
|
| 199 |
-
'text': "<b>Topic Word Scores",
|
| 200 |
-
'x': .5,
|
| 201 |
-
'xanchor': 'center',
|
| 202 |
-
'yanchor': 'top',
|
| 203 |
-
'font': dict(
|
| 204 |
-
size=22,
|
| 205 |
-
color="Black")
|
| 206 |
-
},
|
| 207 |
-
width=width*4,
|
| 208 |
-
height=height*rows if rows > 1 else height * 1.3,
|
| 209 |
-
hoverlabel=dict(
|
| 210 |
-
bgcolor="white",
|
| 211 |
-
font_size=16,
|
| 212 |
-
font_family="Rockwell"
|
| 213 |
-
),
|
| 214 |
-
)
|
| 215 |
-
|
| 216 |
-
fig.update_xaxes(showgrid=True)
|
| 217 |
-
fig.update_yaxes(showgrid=True)
|
| 218 |
-
|
| 219 |
-
return fig
|
| 220 |
-
|
| 221 |
-
|
| 222 |
|
| 223 |
# convert transformer model zero shot classification prediction into dataframe
|
| 224 |
def convert_zero_shot_classification_output_to_dataframe(model_output):
|
|
|
|
| 1 |
|
| 2 |
# imports
|
| 3 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
import re
|
|
|
|
| 5 |
|
| 6 |
|
| 7 |
|
|
|
|
| 69 |
|
| 70 |
|
| 71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
|
| 73 |
# convert transformer model zero shot classification prediction into dataframe
|
| 74 |
def convert_zero_shot_classification_output_to_dataframe(model_output):
|