Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
# Copyright 2022 Meta and The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" PyTorch ESM model.""" | |
import math | |
from typing import List, Optional, Tuple, Union | |
import torch | |
import torch.utils.checkpoint | |
from torch import nn | |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | |
from transformers.file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward | |
from transformers.modeling_outputs import ( | |
BaseModelOutputWithPastAndCrossAttentions, | |
BaseModelOutputWithPoolingAndCrossAttentions, | |
MaskedLMOutput, | |
SequenceClassifierOutput, | |
TokenClassifierOutput, | |
) | |
from transformers.modeling_utils import PreTrainedModel, find_pruneable_heads_and_indices, prune_linear_layer | |
from transformers.utils import logging | |
from configuration_esm import EsmConfig | |
logger = logging.get_logger(__name__) | |
_CHECKPOINT_FOR_DOC = "facebook/esm2_t6_8M_UR50D" | |
_CONFIG_FOR_DOC = "EsmConfig" | |
_TOKENIZER_FOR_DOC = "EsmTokenizer" | |
ESM_PRETRAINED_MODEL_ARCHIVE_LIST = [ | |
"facebook/esm2_t6_8M_UR50D", | |
"facebook/esm2_t12_35M_UR50D", | |
# This is not a complete list of all ESM models! | |
# See all ESM models at https://huggingface.co/models?filter=esm | |
] | |
def rotate_half(x): | |
x1, x2 = x.chunk(2, dim=-1) | |
return torch.cat((-x2, x1), dim=-1) | |
def apply_rotary_pos_emb(x, cos, sin): | |
cos = cos[:, :, : x.shape[-2], :] | |
sin = sin[:, :, : x.shape[-2], :] | |
return (x * cos) + (rotate_half(x) * sin) | |
def gelu(x): | |
""" | |
This is the gelu implementation from the original ESM repo. Using F.gelu yields subtly wrong results. | |
""" | |
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0))) | |
class RotaryEmbedding(torch.nn.Module): | |
""" | |
Rotary position embeddings based on those in | |
[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer). Query and keys are transformed by rotation | |
matrices which depend on their relative positions. | |
""" | |
def __init__(self, dim: int): | |
super().__init__() | |
# Generate and save the inverse frequency buffer (non trainable) | |
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim)) | |
inv_freq = inv_freq | |
self.register_buffer("inv_freq", inv_freq) | |
self._seq_len_cached = None | |
self._cos_cached = None | |
self._sin_cached = None | |
def _update_cos_sin_tables(self, x, seq_dimension=2): | |
seq_len = x.shape[seq_dimension] | |
# Reset the tables if the sequence length has changed, | |
# or if we're on a new device (possibly due to tracing for instance) | |
if seq_len != self._seq_len_cached or self._cos_cached.device != x.device: | |
self._seq_len_cached = seq_len | |
t = torch.arange(x.shape[seq_dimension], device=x.device).type_as(self.inv_freq) | |
freqs = torch.outer(t, self.inv_freq) | |
emb = torch.cat((freqs, freqs), dim=-1).to(x.device) | |
self._cos_cached = emb.cos()[None, None, :, :] | |
self._sin_cached = emb.sin()[None, None, :, :] | |
return self._cos_cached, self._sin_cached | |
def forward(self, q: torch.Tensor, k: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: | |
self._cos_cached, self._sin_cached = self._update_cos_sin_tables(k, seq_dimension=-2) | |
return ( | |
apply_rotary_pos_emb(q, self._cos_cached, self._sin_cached), | |
apply_rotary_pos_emb(k, self._cos_cached, self._sin_cached), | |
) | |
class EsmEmbeddings(nn.Module): | |
""" | |
Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. | |
""" | |
def __init__(self, config): | |
super().__init__() | |
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) | |
if config.emb_layer_norm_before: | |
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
else: | |
self.layer_norm = None | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
# position_ids (1, len position emb) is contiguous in memory and exported when serialized | |
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") | |
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1))) | |
self.padding_idx = config.pad_token_id | |
self.position_embeddings = nn.Embedding( | |
config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx | |
) | |
self.token_dropout = config.token_dropout | |
self.mask_token_id = config.mask_token_id | |
def forward( | |
self, input_ids=None, attention_mask=None, position_ids=None, inputs_embeds=None, past_key_values_length=0 | |
): | |
if position_ids is None: | |
if input_ids is not None: | |
# Create the position ids from the input token ids. Any padded tokens remain padded. | |
position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length) | |
else: | |
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds) | |
if inputs_embeds is None: | |
inputs_embeds = self.word_embeddings(input_ids) | |
# Note that if we want to support ESM-1 (not 1b!) in future then we need to support an | |
# embedding_scale factor here. | |
embeddings = inputs_embeds | |
# Matt: ESM has the option to handle masking in MLM in a slightly unusual way. If the token_dropout | |
# flag is False then it is handled in the same was as BERT/RoBERTa. If it is set to True, however, | |
# masked tokens are treated as if they were selected for input dropout and zeroed out. | |
# This "mask-dropout" is compensated for when masked tokens are not present, by scaling embeddings by | |
# a factor of (fraction of unmasked tokens during training) / (fraction of unmasked tokens in sample). | |
# This is analogous to the way that dropout layers scale down outputs during evaluation when not | |
# actually dropping out values (or, equivalently, scale up their un-dropped outputs in training). | |
if self.token_dropout: | |
embeddings.masked_fill_((input_ids == self.mask_token_id).unsqueeze(-1), 0.0) | |
mask_ratio_train = 0.15 * 0.8 # Hardcoded as the ratio used in all ESM model training runs | |
src_lengths = attention_mask.sum(-1) | |
mask_ratio_observed = (input_ids == self.mask_token_id).sum(-1).float() / src_lengths | |
embeddings = (embeddings * (1 - mask_ratio_train) / (1 - mask_ratio_observed)[:, None, None]).to( | |
embeddings.dtype | |
) | |
if self.position_embedding_type == "absolute": | |
position_embeddings = self.position_embeddings(position_ids) | |
embeddings += position_embeddings | |
if self.layer_norm is not None: | |
embeddings = self.layer_norm(embeddings) | |
if attention_mask is not None: | |
embeddings = (embeddings * attention_mask.unsqueeze(-1)).to(embeddings.dtype) | |
# Matt: I think this line was copied incorrectly from BERT, disabling it for now. | |
# embeddings = self.dropout(embeddings) | |
return embeddings | |
def create_position_ids_from_inputs_embeds(self, inputs_embeds): | |
""" | |
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. | |
Args: | |
inputs_embeds: torch.Tensor | |
Returns: torch.Tensor | |
""" | |
input_shape = inputs_embeds.size()[:-1] | |
sequence_length = input_shape[1] | |
position_ids = torch.arange( | |
self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device | |
) | |
return position_ids.unsqueeze(0).expand(input_shape) | |
class EsmSelfAttention(nn.Module): | |
def __init__(self, config, position_embedding_type=None): | |
super().__init__() | |
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): | |
raise ValueError( | |
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " | |
f"heads ({config.num_attention_heads})" | |
) | |
self.num_attention_heads = config.num_attention_heads | |
self.attention_head_size = int(config.hidden_size / config.num_attention_heads) | |
self.all_head_size = self.num_attention_heads * self.attention_head_size | |
self.query = nn.Linear(config.hidden_size, self.all_head_size) | |
self.key = nn.Linear(config.hidden_size, self.all_head_size) | |
self.value = nn.Linear(config.hidden_size, self.all_head_size) | |
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) | |
self.position_embedding_type = position_embedding_type or getattr( | |
config, "position_embedding_type", "absolute" | |
) | |
self.rotary_embeddings = None | |
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": | |
self.max_position_embeddings = config.max_position_embeddings | |
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) | |
elif self.position_embedding_type == "rotary": | |
self.rotary_embeddings = RotaryEmbedding(dim=self.attention_head_size) | |
self.is_decoder = config.is_decoder | |
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: | |
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) | |
x = x.view(new_x_shape) | |
return x.permute(0, 2, 1, 3) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
output_attentions: Optional[bool] = False, | |
) -> Tuple[torch.Tensor]: | |
mixed_query_layer = self.query(hidden_states) | |
# If this is instantiated as a cross-attention module, the keys | |
# and values come from an encoder; the attention mask needs to be | |
# such that the encoder's padding tokens are not attended to. | |
is_cross_attention = encoder_hidden_states is not None | |
if is_cross_attention and past_key_value is not None: | |
# reuse k,v, cross_attentions | |
key_layer = past_key_value[0] | |
value_layer = past_key_value[1] | |
attention_mask = encoder_attention_mask | |
elif is_cross_attention: | |
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) | |
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) | |
attention_mask = encoder_attention_mask | |
elif past_key_value is not None: | |
key_layer = self.transpose_for_scores(self.key(hidden_states)) | |
value_layer = self.transpose_for_scores(self.value(hidden_states)) | |
key_layer = torch.cat([past_key_value[0], key_layer], dim=2) | |
value_layer = torch.cat([past_key_value[1], value_layer], dim=2) | |
else: | |
key_layer = self.transpose_for_scores(self.key(hidden_states)) | |
value_layer = self.transpose_for_scores(self.value(hidden_states)) | |
query_layer = self.transpose_for_scores(mixed_query_layer) | |
# Matt: Our BERT model (which this code was derived from) scales attention logits down by sqrt(head_dim). | |
# ESM scales the query down by the same factor instead. Modulo numerical stability these are equivalent, | |
# but not when rotary embeddings get involved. Therefore, we scale the query here to match the original | |
# ESM code and fix rotary embeddings. | |
query_layer = query_layer * self.attention_head_size**-0.5 | |
if self.is_decoder: | |
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. | |
# Further calls to cross_attention layer can then reuse all cross-attention | |
# key/value_states (first "if" case) | |
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of | |
# all previous decoder key/value_states. Further calls to uni-directional self-attention | |
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) | |
# if encoder bi-directional self-attention `past_key_value` is always `None` | |
past_key_value = (key_layer, value_layer) | |
if self.position_embedding_type == "rotary": | |
query_layer, key_layer = self.rotary_embeddings(query_layer, key_layer) | |
# Take the dot product between "query" and "key" to get the raw attention scores. | |
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) | |
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": | |
seq_length = hidden_states.size()[1] | |
position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) | |
position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1) | |
distance = position_ids_l - position_ids_r | |
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) | |
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility | |
if self.position_embedding_type == "relative_key": | |
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) | |
attention_scores = attention_scores + relative_position_scores | |
elif self.position_embedding_type == "relative_key_query": | |
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) | |
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) | |
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key | |
if attention_mask is not None: | |
# Apply the attention mask is (precomputed for all layers in EsmModel forward() function) | |
attention_scores = attention_scores + attention_mask | |
# Normalize the attention scores to probabilities. | |
attention_probs = nn.functional.softmax(attention_scores, dim=-1) | |
# This is actually dropping out entire tokens to attend to, which might | |
# seem a bit unusual, but is taken from the original Transformer paper. | |
attention_probs = self.dropout(attention_probs) | |
# Mask heads if we want to | |
if head_mask is not None: | |
attention_probs = attention_probs * head_mask | |
context_layer = torch.matmul(attention_probs, value_layer) | |
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() | |
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) | |
context_layer = context_layer.view(new_context_layer_shape) | |
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) | |
if self.is_decoder: | |
outputs = outputs + (past_key_value,) | |
return outputs | |
class EsmSelfOutput(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, hidden_states, input_tensor): | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states += input_tensor | |
return hidden_states | |
class EsmAttention(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.self = EsmSelfAttention(config) | |
self.output = EsmSelfOutput(config) | |
self.pruned_heads = set() | |
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
def prune_heads(self, heads): | |
if len(heads) == 0: | |
return | |
heads, index = find_pruneable_heads_and_indices( | |
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads | |
) | |
# Prune linear layers | |
self.self.query = prune_linear_layer(self.self.query, index) | |
self.self.key = prune_linear_layer(self.self.key, index) | |
self.self.value = prune_linear_layer(self.self.value, index) | |
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) | |
# Update hyper params and store pruned heads | |
self.self.num_attention_heads = self.self.num_attention_heads - len(heads) | |
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads | |
self.pruned_heads = self.pruned_heads.union(heads) | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
head_mask=None, | |
encoder_hidden_states=None, | |
encoder_attention_mask=None, | |
past_key_value=None, | |
output_attentions=False, | |
): | |
hidden_states_ln = self.LayerNorm(hidden_states) | |
self_outputs = self.self( | |
hidden_states_ln, | |
attention_mask, | |
head_mask, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
past_key_value, | |
output_attentions, | |
) | |
attention_output = self.output(self_outputs[0], hidden_states) | |
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them | |
return outputs | |
class EsmIntermediate(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.intermediate_size) | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = gelu(hidden_states) | |
return hidden_states | |
class EsmOutput(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.intermediate_size, config.hidden_size) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, hidden_states, input_tensor): | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states += input_tensor | |
return hidden_states | |
class EsmLayer(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.chunk_size_feed_forward = config.chunk_size_feed_forward | |
self.seq_len_dim = 1 | |
self.attention = EsmAttention(config) | |
self.is_decoder = config.is_decoder | |
self.add_cross_attention = config.add_cross_attention | |
if self.add_cross_attention: | |
if not self.is_decoder: | |
raise RuntimeError(f"{self} should be used as a decoder model if cross attention is added") | |
self.crossattention = EsmAttention(config) | |
self.intermediate = EsmIntermediate(config) | |
self.output = EsmOutput(config) | |
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
head_mask=None, | |
encoder_hidden_states=None, | |
encoder_attention_mask=None, | |
past_key_value=None, | |
output_attentions=False, | |
): | |
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2 | |
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None | |
self_attention_outputs = self.attention( | |
hidden_states, | |
attention_mask, | |
head_mask, | |
output_attentions=output_attentions, | |
past_key_value=self_attn_past_key_value, | |
) | |
attention_output = self_attention_outputs[0] | |
# if decoder, the last output is tuple of self-attn cache | |
if self.is_decoder: | |
outputs = self_attention_outputs[1:-1] | |
present_key_value = self_attention_outputs[-1] | |
else: | |
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights | |
cross_attn_present_key_value = None | |
if self.is_decoder and encoder_hidden_states is not None: | |
if not hasattr(self, "crossattention"): | |
raise AttributeError( | |
f"If `encoder_hidden_states` are passed, {self} has to be instantiated" | |
" with cross-attention layers by setting `config.add_cross_attention=True`" | |
) | |
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple | |
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None | |
cross_attention_outputs = self.crossattention( | |
attention_output, | |
attention_mask, | |
head_mask, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
cross_attn_past_key_value, | |
output_attentions, | |
) | |
attention_output = cross_attention_outputs[0] | |
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights | |
# add cross-attn cache to positions 3,4 of present_key_value tuple | |
cross_attn_present_key_value = cross_attention_outputs[-1] | |
present_key_value = present_key_value + cross_attn_present_key_value | |
layer_output = self.feed_forward_chunk(attention_output) | |
outputs = (layer_output,) + outputs | |
# if decoder, return the attn key/values as the last output | |
if self.is_decoder: | |
outputs = outputs + (present_key_value,) | |
return outputs | |
def feed_forward_chunk(self, attention_output): | |
attention_output_ln = self.LayerNorm(attention_output) | |
intermediate_output = self.intermediate(attention_output_ln) | |
layer_output = self.output(intermediate_output, attention_output) | |
return layer_output | |
class EsmEncoder(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.layer = nn.ModuleList([EsmLayer(config) for _ in range(config.num_hidden_layers)]) | |
self.emb_layer_norm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
head_mask=None, | |
encoder_hidden_states=None, | |
encoder_attention_mask=None, | |
past_key_values=None, | |
use_cache=None, | |
output_attentions=False, | |
output_hidden_states=False, | |
return_dict=True, | |
): | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attentions = () if output_attentions else None | |
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None | |
next_decoder_cache = () if use_cache else None | |
for i, layer_module in enumerate(self.layer): | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
layer_head_mask = head_mask[i] if head_mask is not None else None | |
past_key_value = past_key_values[i] if past_key_values is not None else None | |
if self.gradient_checkpointing and self.training: | |
if use_cache: | |
logger.warning( | |
"`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting " | |
"`use_cache=False`..." | |
) | |
use_cache = False | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs, past_key_value, output_attentions) | |
return custom_forward | |
layer_outputs = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(layer_module), | |
hidden_states, | |
attention_mask, | |
layer_head_mask, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
) | |
else: | |
layer_outputs = layer_module( | |
hidden_states, | |
attention_mask, | |
layer_head_mask, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
past_key_value, | |
output_attentions, | |
) | |
hidden_states = layer_outputs[0] | |
if use_cache: | |
next_decoder_cache += (layer_outputs[-1],) | |
if output_attentions: | |
all_self_attentions = all_self_attentions + (layer_outputs[1],) | |
if self.config.add_cross_attention: | |
all_cross_attentions = all_cross_attentions + (layer_outputs[2],) | |
if self.emb_layer_norm_after: | |
hidden_states = self.emb_layer_norm_after(hidden_states) | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if not return_dict: | |
return tuple( | |
v | |
for v in [ | |
hidden_states, | |
next_decoder_cache, | |
all_hidden_states, | |
all_self_attentions, | |
all_cross_attentions, | |
] | |
if v is not None | |
) | |
return BaseModelOutputWithPastAndCrossAttentions( | |
last_hidden_state=hidden_states, | |
past_key_values=next_decoder_cache, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attentions, | |
cross_attentions=all_cross_attentions, | |
) | |
# Copied from transformers.models.bert.modeling_bert.BertPooler | |
class EsmPooler(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.activation = nn.Tanh() | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
# We "pool" the model by simply taking the hidden state corresponding | |
# to the first token. | |
first_token_tensor = hidden_states[:, 0] | |
pooled_output = self.dense(first_token_tensor) | |
pooled_output = self.activation(pooled_output) | |
return pooled_output | |
class EsmPreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = EsmConfig | |
base_model_prefix = "esm" | |
_no_split_modules = ["EsmLayer", "EsmFoldTriangularSelfAttentionBlock"] | |
# Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights | |
def _init_weights(self, module): | |
"""Initialize the weights""" | |
if isinstance(module, nn.Linear): | |
# Slightly different from the TF version which uses truncated_normal for initialization | |
# cf https://github.com/pytorch/pytorch/pull/5617 | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
elif isinstance(module, nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
ESM_START_DOCSTRING = r""" | |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
etc.) | |
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
and behavior. | |
Parameters: | |
config ([`EsmConfig`]): Model configuration class with all the parameters of the | |
model. Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
ESM_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `({0})`): | |
Indices of input sequence tokens in the vocabulary. | |
Indices can be obtained using [`EsmTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are input IDs?](../glossary#input-ids) | |
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
position_ids (`torch.LongTensor` of shape `({0})`, *optional*): | |
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | |
config.max_position_embeddings - 1]`. | |
[What are position IDs?](../glossary#position-ids) | |
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | |
model's internal embedding lookup matrix. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. | |
""" | |
class EsmModel(EsmPreTrainedModel): | |
""" | |
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of | |
cross-attention is added between the self-attention layers, following the architecture described in [Attention is | |
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, | |
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. | |
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set | |
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and | |
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. | |
""" | |
_keys_to_ignore_on_load_missing = [r"position_ids"] | |
supports_gradient_checkpointing = False | |
# Copied from transformers.models.bert.modeling_bert.BertModel.__init__ with Bert->Esm | |
def __init__(self, config, add_pooling_layer=True): | |
super().__init__(config) | |
self.config = config | |
self.embeddings = EsmEmbeddings(config) | |
self.encoder = EsmEncoder(config) | |
self.pooler = EsmPooler(config) if add_pooling_layer else None | |
# Initialize weights and apply final processing | |
self.post_init() | |
def _set_gradient_checkpointing(self, module, value=False): | |
if isinstance(module, EsmEncoder): | |
module.gradient_checkpointing = value | |
def get_input_embeddings(self): | |
return self.embeddings.word_embeddings | |
def set_input_embeddings(self, value): | |
self.embeddings.word_embeddings = value | |
def _prune_heads(self, heads_to_prune): | |
""" | |
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base | |
class PreTrainedModel | |
""" | |
for layer, heads in heads_to_prune.items(): | |
self.encoder.layer[layer].attention.prune_heads(heads) | |
def forward( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
encoder_attention_mask: Optional[torch.Tensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: | |
r""" | |
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if | |
the model is configured as a decoder. | |
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in | |
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): | |
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. | |
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that | |
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all | |
`decoder_input_ids` of shape `(batch_size, sequence_length)`. | |
use_cache (`bool`, *optional*): | |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | |
`past_key_values`). | |
""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if self.config.is_decoder: | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
else: | |
use_cache = False | |
if input_ids is not None and inputs_embeds is not None: | |
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | |
elif input_ids is not None: | |
input_shape = input_ids.size() | |
elif inputs_embeds is not None: | |
input_shape = inputs_embeds.size()[:-1] | |
else: | |
raise ValueError("You have to specify either input_ids or inputs_embeds") | |
batch_size, seq_length = input_shape | |
device = input_ids.device if input_ids is not None else inputs_embeds.device | |
# past_key_values_length | |
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 | |
if attention_mask is None: | |
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) | |
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] | |
# ourselves in which case we just need to make it broadcastable to all heads. | |
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) | |
# If a 2D or 3D attention mask is provided for the cross-attention | |
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] | |
if self.config.is_decoder and encoder_hidden_states is not None: | |
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() | |
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) | |
if encoder_attention_mask is None: | |
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) | |
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) | |
else: | |
encoder_extended_attention_mask = None | |
# Prepare head mask if needed | |
# 1.0 in head_mask indicate we keep the head | |
# attention_probs has shape bsz x n_heads x N x N | |
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] | |
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] | |
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) | |
embedding_output = self.embeddings( | |
input_ids=input_ids, | |
position_ids=position_ids, | |
attention_mask=attention_mask, | |
inputs_embeds=inputs_embeds, | |
past_key_values_length=past_key_values_length, | |
) | |
encoder_outputs = self.encoder( | |
embedding_output, | |
attention_mask=extended_attention_mask, | |
head_mask=head_mask, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_extended_attention_mask, | |
past_key_values=past_key_values, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = encoder_outputs[0] | |
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None | |
if not return_dict: | |
return (sequence_output, pooled_output) + encoder_outputs[1:] | |
return BaseModelOutputWithPoolingAndCrossAttentions( | |
last_hidden_state=sequence_output, | |
pooler_output=pooled_output, | |
past_key_values=encoder_outputs.past_key_values, | |
hidden_states=encoder_outputs.hidden_states, | |
attentions=encoder_outputs.attentions, | |
cross_attentions=encoder_outputs.cross_attentions, | |
) | |
class EsmForMaskedLM(EsmPreTrainedModel): | |
_keys_to_ignore_on_load_missing = [r"position_ids", "lm_head.decoder.weight"] | |
_keys_to_ignore_on_load_unexpected = [r"pooler"] | |
def __init__(self, config): | |
super().__init__(config) | |
if config.is_decoder: | |
logger.warning( | |
"If you want to use `EsmForMaskedLM` make sure `config.is_decoder=False` for " | |
"bi-directional self-attention." | |
) | |
self.esm = EsmModel(config, add_pooling_layer=False) | |
self.lm_head = EsmLMHead(config) | |
self.init_weights() | |
def get_output_embeddings(self): | |
return self.lm_head.decoder | |
def set_output_embeddings(self, new_embeddings): | |
self.lm_head.decoder = new_embeddings | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
encoder_attention_mask: Optional[torch.Tensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, MaskedLMOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., | |
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the | |
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` | |
kwargs (`Dict[str, any]`, optional, defaults to *{}*): | |
Used to hide legacy arguments that have been deprecated. | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.esm( | |
input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_attention_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
prediction_scores = self.lm_head(sequence_output) | |
masked_lm_loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() | |
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) | |
if not return_dict: | |
output = (prediction_scores,) + outputs[2:] | |
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output | |
return MaskedLMOutput( | |
loss=masked_lm_loss, | |
logits=prediction_scores, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
class EsmLMHead(nn.Module): | |
"""ESM Head for masked language modeling.""" | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
self.bias = nn.Parameter(torch.zeros(config.vocab_size)) | |
def forward(self, features, **kwargs): | |
x = self.dense(features) | |
x = gelu(x) | |
x = self.layer_norm(x) | |
# project back to size of vocabulary with bias | |
x = self.decoder(x) + self.bias | |
return x | |
class EsmForSequenceClassification(EsmPreTrainedModel): | |
_keys_to_ignore_on_load_missing = [r"position_ids"] | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.config = config | |
self.esm = EsmModel(config, add_pooling_layer=False) | |
self.classifier = EsmClassificationHead(config) | |
self.init_weights() | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, SequenceClassifierOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.esm( | |
input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
logits = self.classifier(sequence_output) | |
loss = None | |
if labels is not None: | |
if self.config.problem_type is None: | |
if self.num_labels == 1: | |
self.config.problem_type = "regression" | |
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): | |
self.config.problem_type = "single_label_classification" | |
else: | |
self.config.problem_type = "multi_label_classification" | |
if self.config.problem_type == "regression": | |
loss_fct = MSELoss() | |
if self.num_labels == 1: | |
loss = loss_fct(logits.squeeze(), labels.squeeze()) | |
else: | |
loss = loss_fct(logits, labels) | |
elif self.config.problem_type == "single_label_classification": | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
elif self.config.problem_type == "multi_label_classification": | |
loss_fct = BCEWithLogitsLoss() | |
loss = loss_fct(logits, labels) | |
if not return_dict: | |
output = (logits,) + outputs[2:] | |
return ((loss,) + output) if loss is not None else output | |
return SequenceClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
class EsmForSequenceClassificationCustom(EsmPreTrainedModel): | |
_keys_to_ignore_on_load_missing = [r"position_ids"] | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.config = config | |
self.esm = EsmModel(config, add_pooling_layer=False) | |
self.classifier = EsmClassificationHeadCustom(config) | |
self.init_weights() | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, SequenceClassifierOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.esm( | |
input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
logits = self.classifier(sequence_output) | |
loss = None | |
if labels is not None: | |
if self.config.problem_type is None: | |
if self.num_labels == 1: | |
self.config.problem_type = "regression" | |
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): | |
self.config.problem_type = "single_label_classification" | |
else: | |
self.config.problem_type = "multi_label_classification" | |
if self.config.problem_type == "regression": | |
loss_fct = MSELoss() | |
if self.num_labels == 1: | |
loss = loss_fct(logits.squeeze(), labels.squeeze()) | |
else: | |
loss = loss_fct(logits, labels) | |
elif self.config.problem_type == "single_label_classification": | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
elif self.config.problem_type == "multi_label_classification": | |
loss_fct = BCEWithLogitsLoss() | |
loss = loss_fct(logits, labels) | |
if not return_dict: | |
output = (logits,) + outputs[2:] | |
return ((loss,) + output) if loss is not None else output | |
return SequenceClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
#from model_outputs import SequenceClassifierOutputCustom | |
class EsmForSequenceClassificationMHACustom(EsmPreTrainedModel): | |
_keys_to_ignore_on_load_missing = [r"position_ids"] | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.config = config | |
self.esm = EsmModel(config, add_pooling_layer=False) | |
self.classifier = EsmClassificationHeadMHACustom(config) | |
self.init_weights() | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, SequenceClassifierOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.esm( | |
input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
logits, self.attn_outputs, self.attn_output_weights = self.classifier(sequence_output) | |
loss = None | |
if labels is not None: | |
if self.config.problem_type is None: | |
if self.num_labels == 1: | |
self.config.problem_type = "regression" | |
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): | |
self.config.problem_type = "single_label_classification" | |
else: | |
self.config.problem_type = "multi_label_classification" | |
if self.config.problem_type == "regression": | |
loss_fct = MSELoss() | |
if self.num_labels == 1: | |
loss = loss_fct(logits.squeeze(), labels.squeeze()) | |
else: | |
loss = loss_fct(logits, labels) | |
elif self.config.problem_type == "single_label_classification": | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
elif self.config.problem_type == "multi_label_classification": | |
loss_fct = BCEWithLogitsLoss() | |
loss = loss_fct(logits, labels) | |
if not return_dict: | |
output = (logits,) + outputs[2:] | |
return ((loss,) + output) if loss is not None else output | |
return (SequenceClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
), | |
self.attn_outputs, # classifier attn_outputs | |
self.attn_output_weights, # classifier attn_output_weights | |
) | |
class EsmForTokenClassification(EsmPreTrainedModel): | |
_keys_to_ignore_on_load_unexpected = [r"pooler"] | |
_keys_to_ignore_on_load_missing = [r"position_ids"] | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.esm = EsmModel(config, add_pooling_layer=False) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
self.classifier = nn.Linear(config.hidden_size, config.num_labels) | |
self.init_weights() | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, TokenClassifierOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.esm( | |
input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
sequence_output = self.dropout(sequence_output) | |
logits = self.classifier(sequence_output) | |
loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() | |
# Only keep active parts of the loss | |
if attention_mask is not None: | |
active_loss = attention_mask.view(-1) == 1 | |
active_logits = logits.view(-1, self.num_labels) | |
active_labels = torch.where( | |
active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels) | |
) | |
loss = loss_fct(active_logits, active_labels) | |
else: | |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
if not return_dict: | |
output = (logits,) + outputs[2:] | |
return ((loss,) + output) if loss is not None else output | |
return TokenClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
class EsmClassificationHead(nn.Module): | |
"""Head for sentence-level classification tasks.""" | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
self.out_proj = nn.Linear(config.hidden_size, config.num_labels) | |
def forward(self, features, **kwargs): | |
x = features[:, 0, :] # take <s> token (equiv. to [CLS]) | |
x = self.dropout(x) | |
x = self.dense(x) | |
x = torch.tanh(x) | |
x = self.dropout(x) | |
x = self.out_proj(x) | |
return x | |
class EsmClassificationHeadCustom(nn.Module): | |
"""Head for sentence-level classification tasks.""" | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
self.out_proj = nn.Linear(config.hidden_size, config.num_labels) | |
def forward(self, features, **kwargs): | |
x = features[:, 8, :] # take center substrate token | |
x = self.dropout(x) | |
x = self.dense(x) | |
x = torch.tanh(x) | |
x = self.dropout(x) | |
x = self.out_proj(x) | |
return x | |
class EsmClassificationHeadMHACustom(nn.Module): | |
"""Head for sentence-level classification tasks.""" | |
def __init__(self, config): | |
super().__init__() | |
self.multihead_attn = nn.MultiheadAttention(embed_dim = config.hidden_size, num_heads=8, batch_first=True) | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
self.out_proj = nn.Linear(config.hidden_size, config.num_labels) | |
def forward(self, features, **kwargs): | |
x_substrate = features[:, :16, :] | |
x_kinase = features[:, 16:, :] | |
attn_output, attn_output_weights = self.multihead_attn(x_substrate, x_kinase, x_kinase) | |
x = attn_output[:, 8, :] # take center substrate token | |
x = self.dropout(x) | |
x = self.dense(x) | |
x = torch.tanh(x) | |
x = self.dropout(x) | |
x = self.out_proj(x) | |
return x, attn_output, attn_output_weights | |
def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0): | |
""" | |
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols | |
are ignored. This is modified from fairseq's `utils.make_positions`. | |
Args: | |
x: torch.Tensor x: | |
Returns: torch.Tensor | |
""" | |
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. | |
mask = input_ids.ne(padding_idx).int() | |
incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask | |
return incremental_indices.long() + padding_idx | |
class EsmClassificationHeadStructureCustom(nn.Module): | |
"""Head for sentence-level classification tasks.""" | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.input_size, config.hidden_size) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
self.out_proj = nn.Linear(config.hidden_size, config.num_labels) | |
def forward(self, features_sequence, features_structure, **kwargs): | |
x = features_sequence[:, 8, :] # take center substrate token | |
x = torch.cat([x, features_structure], 1) | |
# print(x.shape) | |
x = self.dropout(x) | |
x = self.dense(x) | |
x = torch.tanh(x) | |
x = self.dropout(x) | |
x = self.out_proj(x) | |
return x | |
# from kinasedb import KinaseDB_Uniport | |
# # import torchdrug.datasets as tddatasets | |
# from torchdrug import transforms as tdtransforms | |
# # from torchdrug.data.protein import PackedProtein | |
# from torchdrug import layers as tdlayers | |
# from torchdrug.layers import geometry as tdgeometry | |
# from torchdrug.models import GearNet | |
# from torchdrug import data as tddata | |
# from torchdrug import utils as tdutils | |
# class EsmForSequenceClassificationStructureCustom(EsmPreTrainedModel): | |
# _keys_to_ignore_on_load_missing = [r"position_ids"] | |
# def __init__(self, config): | |
# super().__init__(config) | |
# self.num_labels = config.num_labels | |
# self.config = config | |
# self.config.input_size = self.config.hidden_size + 3072 | |
# self.esm = EsmModel(config, add_pooling_layer=False) | |
# self.classifier = EsmClassificationHeadStructureCustom(config) | |
# self.graph_construction_model = tdlayers.GraphConstruction(node_layers=[tdgeometry.AlphaCarbonNode()], | |
# edge_layers=[tdgeometry.SpatialEdge(radius=10.0, min_distance=5), | |
# tdgeometry.KNNEdge(k=10, min_distance=5), | |
# tdgeometry.SequentialEdge(max_distance=2)], | |
# edge_feature="gearnet") | |
# truncuate_transform = tdtransforms.TruncateProtein(max_length=800, random=True) | |
# protein_view_transform = tdtransforms.ProteinView(view='residue') | |
# transform = tdtransforms.Compose([truncuate_transform, protein_view_transform]) | |
# self.dataset_uniprot = KinaseDB_Uniport("../curated_dataset_waylandy/structure_dataset/", self.graph_construction_model, transform=transform, atom_feature=None, bond_feature=None) | |
# self.gearnet_edge = GearNet(input_dim=21, hidden_dims=[512, 512, 512, 512, 512, 512], | |
# num_relation=7, edge_input_dim=59, num_angle_bin=8, | |
# batch_norm=True, concat_hidden=True, short_cut=True, readout="sum") | |
# self.gearnet_edge.load_state_dict(torch.load("./mc_gearnet_edge.pth"), strict=False) | |
# self.init_weights() | |
# def forward( | |
# self, | |
# input_ids: Optional[torch.LongTensor] = None, | |
# kinase_id: Optional[torch.LongTensor] = None, | |
# attention_mask: Optional[torch.Tensor] = None, | |
# position_ids: Optional[torch.LongTensor] = None, | |
# head_mask: Optional[torch.Tensor] = None, | |
# inputs_embeds: Optional[torch.FloatTensor] = None, | |
# labels: Optional[torch.LongTensor] = None, | |
# output_attentions: Optional[bool] = None, | |
# output_hidden_states: Optional[bool] = None, | |
# return_dict: Optional[bool] = None, | |
# ) -> Union[Tuple, SequenceClassifierOutput]: | |
# r""" | |
# labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
# Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | |
# config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
# `config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
# """ | |
# return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# outputs = self.esm( | |
# input_ids, | |
# attention_mask=attention_mask, | |
# position_ids=position_ids, | |
# head_mask=head_mask, | |
# inputs_embeds=inputs_embeds, | |
# output_attentions=output_attentions, | |
# output_hidden_states=output_hidden_states, | |
# return_dict=return_dict, | |
# ) | |
# sequence_output = outputs[0] | |
# # print(kinase_id.tolist()) | |
# packedprotein = tddata.Protein.pack([self.dataset_uniprot.get_item(i)["graph"] for i in kinase_id.tolist()]) | |
# packedprotein = tdutils.cuda(packedprotein, device=self.device) | |
# graph = self.graph_construction_model(packedprotein).cuda() | |
# structure_output = self.gearnet_edge(graph, graph.node_feature.float()) | |
# logits = self.classifier(sequence_output, structure_output["graph_feature"]) | |
# # print(logits.shape) | |
# loss = None | |
# if labels is not None: | |
# if self.config.problem_type is None: | |
# if self.num_labels == 1: | |
# self.config.problem_type = "regression" | |
# elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): | |
# self.config.problem_type = "single_label_classification" | |
# else: | |
# self.config.problem_type = "multi_label_classification" | |
# if self.config.problem_type == "regression": | |
# loss_fct = MSELoss() | |
# if self.num_labels == 1: | |
# loss = loss_fct(logits.squeeze(), labels.squeeze()) | |
# else: | |
# loss = loss_fct(logits, labels) | |
# elif self.config.problem_type == "single_label_classification": | |
# loss_fct = CrossEntropyLoss() | |
# loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
# elif self.config.problem_type == "multi_label_classification": | |
# loss_fct = BCEWithLogitsLoss() | |
# loss = loss_fct(logits, labels) | |
# if not return_dict: | |
# output = (logits,) + outputs[2:] | |
# return ((loss,) + output) if loss is not None else output | |
# return SequenceClassifierOutput( | |
# loss=loss, | |
# logits=logits, | |
# hidden_states=outputs.hidden_states, | |
# attentions=outputs.attentions, | |
# ) |