gradiostudent commited on
Commit
fa46ed4
Β·
1 Parent(s): 07646bd

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -101
app.py CHANGED
@@ -1,102 +1,5 @@
1
- from huggingface_hub import InferenceClient
2
- import gradio as gr
3
 
4
- client = InferenceClient(
5
- "TheBloke/Yarn-Mistral-7B-128k-GGUF"
6
- )
7
-
8
-
9
- def format_prompt(message, history):
10
- prompt = "<s>"
11
- for user_prompt, bot_response in history:
12
- prompt += f"[INST] {user_prompt} [/INST]"
13
- prompt += f" {bot_response}</s> "
14
- prompt += f"[INST] {message} [/INST]"
15
- return prompt
16
-
17
- def generate(
18
- prompt, history, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,
19
- ):
20
- temperature = float(temperature)
21
- if temperature < 1e-2:
22
- temperature = 1e-2
23
- top_p = float(top_p)
24
-
25
- generate_kwargs = dict(
26
- temperature=temperature,
27
- max_new_tokens=max_new_tokens,
28
- top_p=top_p,
29
- repetition_penalty=repetition_penalty,
30
- do_sample=True,
31
- seed=42,
32
- )
33
-
34
- formatted_prompt = format_prompt(prompt, history)
35
-
36
- stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
37
- output = ""
38
-
39
- for response in stream:
40
- output += response.token.text
41
- yield output
42
- return output
43
-
44
-
45
- additional_inputs=[
46
- gr.Slider(
47
- label="Temperature",
48
- value=0.9,
49
- minimum=0.0,
50
- maximum=1.0,
51
- step=0.05,
52
- interactive=True,
53
- info="Higher values produce more diverse outputs",
54
- ),
55
- gr.Slider(
56
- label="Max new tokens",
57
- value=256,
58
- minimum=0,
59
- maximum=1048,
60
- step=64,
61
- interactive=True,
62
- info="The maximum numbers of new tokens",
63
- ),
64
- gr.Slider(
65
- label="Top-p (nucleus sampling)",
66
- value=0.90,
67
- minimum=0.0,
68
- maximum=1,
69
- step=0.05,
70
- interactive=True,
71
- info="Higher values sample more low-probability tokens",
72
- ),
73
- gr.Slider(
74
- label="Repetition penalty",
75
- value=1.2,
76
- minimum=1.0,
77
- maximum=2.0,
78
- step=0.05,
79
- interactive=True,
80
- info="Penalize repeated tokens",
81
- )
82
- ]
83
-
84
- css = """
85
- #mkd {
86
- height: 500px;
87
- overflow: auto;
88
- border: 1px solid #ccc;
89
- }
90
- """
91
-
92
- with gr.Blocks(css=css) as demo:
93
- gr.HTML("<h1><center>Mistral 7B Instruct<h1><center>")
94
- gr.HTML("<h3><center>In this demo, you can chat with <a href='https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1'>Mistral-7B-Instruct</a> model. πŸ’¬<h3><center>")
95
- gr.HTML("<h3><center>Learn more about the model <a href='https://huggingface.co/docs/transformers/main/model_doc/mistral'>here</a>. πŸ“š<h3><center>")
96
- gr.ChatInterface(
97
- generate,
98
- additional_inputs=additional_inputs,
99
- examples=[["What is the secret to life?"], ["Write me a recipe for pancakes."]]
100
- )
101
-
102
- demo.queue(concurrency_count=75, max_size=100).launch(debug=True)
 
1
+ # Load model directly
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM
3
 
4
+ tokenizer = AutoTokenizer.from_pretrained("TheBloke/Yarn-Mistral-7B-128k-GPTQ")
5
+ model = AutoModelForCausalLM.from_pretrained("TheBloke/Yarn-Mistral-7B-128k-GPTQ")