freddyaboulton HF Staff commited on
Commit
ce32205
·
verified ·
1 Parent(s): 72f1ac1

Upload folder using huggingface_hub

Browse files
Files changed (3) hide show
  1. README.md +1 -1
  2. run.ipynb +1 -1
  3. run.py +2 -1
README.md CHANGED
@@ -5,7 +5,7 @@ emoji: 🔥
5
  colorFrom: indigo
6
  colorTo: indigo
7
  sdk: gradio
8
- sdk_version: 5.49.1
9
  app_file: run.py
10
  pinned: false
11
  hf_oauth: true
 
5
  colorFrom: indigo
6
  colorTo: indigo
7
  sdk: gradio
8
+ sdk_version: 6.0.0
9
  app_file: run.py
10
  pinned: false
11
  hf_oauth: true
run.ipynb CHANGED
@@ -1 +1 @@
1
- {"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: sentiment_analysis\n", "### This sentiment analaysis demo takes in input text and returns its classification for either positive, negative or neutral using Gradio's Label output.\n", " "]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio nltk"]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "import nltk # type: ignore\n", "from nltk.sentiment.vader import SentimentIntensityAnalyzer # type: ignore\n", "\n", "nltk.download(\"vader_lexicon\")\n", "sid = SentimentIntensityAnalyzer()\n", "\n", "def sentiment_analysis(text):\n", " scores = sid.polarity_scores(text)\n", " del scores[\"compound\"]\n", " return scores\n", "\n", "demo = gr.Interface(\n", " fn=sentiment_analysis,\n", " inputs=gr.Textbox(placeholder=\"Enter a positive or negative sentence here...\"),\n", " outputs=\"label\",\n", " examples=[[\"This is wonderful!\"]])\n", "\n", "demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
 
1
+ {"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: sentiment_analysis\n", "### This sentiment analaysis demo takes in input text and returns its classification for either positive, negative or neutral using Gradio's Label output.\n", " "]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio nltk"]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "import nltk # type: ignore\n", "from nltk.sentiment.vader import SentimentIntensityAnalyzer # type: ignore\n", "\n", "nltk.download(\"vader_lexicon\")\n", "sid = SentimentIntensityAnalyzer()\n", "\n", "def sentiment_analysis(text):\n", " scores = sid.polarity_scores(text)\n", " del scores[\"compound\"]\n", " return scores\n", "\n", "demo = gr.Interface(\n", " fn=sentiment_analysis,\n", " inputs=gr.Textbox(placeholder=\"Enter a positive or negative sentence here...\"),\n", " outputs=\"label\",\n", " examples=[[\"This is wonderful!\"]],\n", " api_name=\"predict\")\n", "\n", "demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
run.py CHANGED
@@ -14,6 +14,7 @@ demo = gr.Interface(
14
  fn=sentiment_analysis,
15
  inputs=gr.Textbox(placeholder="Enter a positive or negative sentence here..."),
16
  outputs="label",
17
- examples=[["This is wonderful!"]])
 
18
 
19
  demo.launch()
 
14
  fn=sentiment_analysis,
15
  inputs=gr.Textbox(placeholder="Enter a positive or negative sentence here..."),
16
  outputs="label",
17
+ examples=[["This is wonderful!"]],
18
+ api_name="predict")
19
 
20
  demo.launch()