abidlabs's picture
abidlabs HF staff
Create app.py
879b2af
raw
history blame
861 Bytes
import torch
model = torch.hub.load('pytorch/vision:v0.6.0', 'resnet18', pretrained=True).eval()
import requests
from PIL import Image
from torchvision import transforms
# Download human-readable labels for ImageNet.
response = requests.get("https://git.io/JJkYN")
labels = response.text.split("\n")
def predict(inp):
inp = Image.fromarray(inp.astype('uint8'), 'RGB')
inp = transforms.ToTensor()(inp).unsqueeze(0)
with torch.no_grad():
prediction = torch.nn.functional.softmax(model(inp)[0], dim=0)
confidences = {labels[i]: float(prediction[i]) for i in range(1000)}
return confidences
import gradio as gr
gr.Interface(fn=predict,
inputs="image",
outputs=gr.outputs.Label(num_top_classes=3),
examples=["lion.jpg"], ["cheetah.jpg"],
css=".footer{display:none !important}").launch()