Spaces:
Sleeping
Sleeping
Upload with huggingface_hub
Browse files- README.md +6 -7
- requirements.txt +2 -0
- run.ipynb +1 -0
- run.py +12 -0
- scatter_plot_demo.py +47 -0
README.md
CHANGED
@@ -1,12 +1,11 @@
|
|
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.13.0
|
8 |
-
app_file:
|
9 |
pinned: false
|
10 |
---
|
11 |
-
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
+
|
2 |
---
|
3 |
+
title: native_plots_main
|
4 |
+
emoji: 🔥
|
5 |
+
colorFrom: indigo
|
6 |
+
colorTo: indigo
|
7 |
sdk: gradio
|
8 |
sdk_version: 3.13.0
|
9 |
+
app_file: run.py
|
10 |
pinned: false
|
11 |
---
|
|
|
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
vega_datasets
|
2 |
+
https://gradio-main-build.s3.amazonaws.com/9c8fa8bf45105032fc71e9ccad68c773464dfccb/gradio-3.13.0-py3-none-any.whl
|
run.ipynb
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"cells": [{"cell_type": "markdown", "id": 302934307671667531413257853548643485645, "metadata": {}, "source": ["# Gradio Demo: native_plots"]}, {"cell_type": "code", "execution_count": null, "id": 272996653310673477252411125948039410165, "metadata": {}, "outputs": [], "source": ["!pip install -q gradio vega_datasets"]}, {"cell_type": "code", "execution_count": null, "id": 288918539441861185822528903084949547379, "metadata": {}, "outputs": [], "source": ["# Downloading files from the demo repo\n", "import os\n", "!wget -q https://github.com/gradio-app/gradio/raw/main/demo/native_plots/scatter_plot_demo.py"]}, {"cell_type": "code", "execution_count": null, "id": 44380577570523278879349135829904343037, "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "\n", "from scatter_plot_demo import scatter_plot\n", "\n", "\n", "with gr.Blocks() as demo:\n", " with gr.Tabs():\n", " with gr.TabItem(\"Scatter Plot\"):\n", " scatter_plot.render()\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
|
run.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
from scatter_plot_demo import scatter_plot
|
4 |
+
|
5 |
+
|
6 |
+
with gr.Blocks() as demo:
|
7 |
+
with gr.Tabs():
|
8 |
+
with gr.TabItem("Scatter Plot"):
|
9 |
+
scatter_plot.render()
|
10 |
+
|
11 |
+
if __name__ == "__main__":
|
12 |
+
demo.launch()
|
scatter_plot_demo.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
from vega_datasets import data
|
4 |
+
|
5 |
+
cars = data.cars()
|
6 |
+
iris = data.iris()
|
7 |
+
|
8 |
+
|
9 |
+
def scatter_plot_fn(dataset):
|
10 |
+
if dataset == "iris":
|
11 |
+
return gr.ScatterPlot.update(
|
12 |
+
value=iris,
|
13 |
+
x="petalWidth",
|
14 |
+
y="petalLength",
|
15 |
+
color="species",
|
16 |
+
title="Iris Dataset",
|
17 |
+
color_legend_title="Species",
|
18 |
+
x_title="Petal Width",
|
19 |
+
y_title="Petal Length",
|
20 |
+
tooltip=["petalWidth", "petalLength", "species"],
|
21 |
+
caption="",
|
22 |
+
)
|
23 |
+
else:
|
24 |
+
return gr.ScatterPlot.update(
|
25 |
+
value=cars,
|
26 |
+
x="Horsepower",
|
27 |
+
y="Miles_per_Gallon",
|
28 |
+
color="Origin",
|
29 |
+
tooltip="Name",
|
30 |
+
title="Car Data",
|
31 |
+
y_title="Miles per Gallon",
|
32 |
+
color_legend_title="Origin of Car",
|
33 |
+
caption="MPG vs Horsepower of various cars"
|
34 |
+
)
|
35 |
+
|
36 |
+
|
37 |
+
with gr.Blocks() as scatter_plot:
|
38 |
+
with gr.Row():
|
39 |
+
with gr.Column():
|
40 |
+
dataset = gr.Dropdown(choices=["cars", "iris"], value="cars")
|
41 |
+
with gr.Column():
|
42 |
+
plot = gr.ScatterPlot(show_label=False).style(container=True)
|
43 |
+
dataset.change(scatter_plot_fn, inputs=dataset, outputs=plot)
|
44 |
+
scatter_plot.load(fn=scatter_plot_fn, inputs=dataset, outputs=plot)
|
45 |
+
|
46 |
+
if __name__ == "__main__":
|
47 |
+
scatter_plot.launch()
|