Spaces:
Running
Running
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# URL: https://huggingface.co/spaces/gradio/image_segmentation/
|
2 |
+
# imports
|
3 |
+
import gradio as gr
|
4 |
+
from transformers import DetrFeatureExtractor, DetrForSegmentation
|
5 |
+
from PIL import Image
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
import torchvision
|
9 |
+
import itertools
|
10 |
+
import seaborn as sns
|
11 |
+
|
12 |
+
# load model from hugging face
|
13 |
+
feature_extractor = DetrFeatureExtractor.from_pretrained('facebook/detr-resnet-50-panoptic')
|
14 |
+
model = DetrForSegmentation.from_pretrained('facebook/detr-resnet-50-panoptic')
|
15 |
+
|
16 |
+
def predict_animal_mask(im,
|
17 |
+
gr_slider_confidence):
|
18 |
+
image = Image.fromarray(im)
|
19 |
+
image = image.resize((200,200))
|
20 |
+
encoding = feature_extractor(images=image, return_tensors="pt")
|
21 |
+
outputs = model(**encoding)
|
22 |
+
logits = outputs.logits
|
23 |
+
bboxes = outputs.pred_boxes
|
24 |
+
masks = outputs.pred_masks
|
25 |
+
prob_per_query = outputs.logits.softmax(-1)[..., :-1].max(-1)[0]
|
26 |
+
keep = prob_per_query > gr_slider_confidence/100.0
|
27 |
+
label_per_pixel = torch.argmax(masks[keep].squeeze(),dim=0).detach().numpy()
|
28 |
+
color_mask = np.zeros(image.size+(3,))
|
29 |
+
palette = itertools.cycle(sns.color_palette())
|
30 |
+
for lbl in np.unique(label_per_pixel):
|
31 |
+
color_mask[label_per_pixel==lbl,:] = np.asarray(next(palette))*255
|
32 |
+
pred_img = np.array(image.convert('RGB'))*0.25 + color_mask*0.75
|
33 |
+
pred_img = pred_img.astype(np.uint8)
|
34 |
+
return pred_img
|
35 |
+
|
36 |
+
|
37 |
+
# define inputs
|
38 |
+
gr_image_input = gr.inputs.Image()
|
39 |
+
gr_slider_confidence = gr.inputs.Slider(0,100,5,85,
|
40 |
+
label='Set confidence threshold for masks')
|
41 |
+
# define output
|
42 |
+
gr_image_output = gr.outputs.Image()
|
43 |
+
|
44 |
+
# define interface
|
45 |
+
demo = gr.Interface(predict_animal_mask,
|
46 |
+
inputs = [gr_image_input,gr_slider_confidence],
|
47 |
+
outputs = gr_image_output,
|
48 |
+
title = 'Image segmentation with varying confidence',
|
49 |
+
description = "A panoptic (semantic+instance) segmentation webapp using DETR (End-to-End Object Detection) model with ResNet-50 backbone",
|
50 |
+
examples=[["cheetah.jpg", 75], ["lion.jpg", 85]])
|
51 |
+
|
52 |
+
# launch
|
53 |
+
demo.launch()
|