Spaces:
Runtime error
Runtime error
Upload folder using huggingface_hub
Browse files
README.md
CHANGED
@@ -5,7 +5,7 @@ emoji: 🔥
|
|
5 |
colorFrom: indigo
|
6 |
colorTo: indigo
|
7 |
sdk: gradio
|
8 |
-
sdk_version:
|
9 |
app_file: run.py
|
10 |
pinned: false
|
11 |
hf_oauth: true
|
|
|
5 |
colorFrom: indigo
|
6 |
colorTo: indigo
|
7 |
sdk: gradio
|
8 |
+
sdk_version: 4.0.2
|
9 |
app_file: run.py
|
10 |
pinned: false
|
11 |
hf_oauth: true
|
run.ipynb
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: image_classifier_interpretation"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio numpy tensorflow"]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["# Downloading files from the demo repo\n", "import os\n", "os.mkdir('files')\n", "!wget -q -O files/imagenet_labels.json https://github.com/gradio-app/gradio/raw/main/demo/image_classifier_interpretation/files/imagenet_labels.json\n", "os.mkdir('images')\n", "!wget -q -O images/cheetah1.jpg https://github.com/gradio-app/gradio/raw/main/demo/image_classifier_interpretation/images/cheetah1.jpg\n", "!wget -q -O images/lion.jpg https://github.com/gradio-app/gradio/raw/main/demo/image_classifier_interpretation/images/lion.jpg"]}, {"cell_type": "code", "execution_count": null, "id": "44380577570523278879349135829904343037", "metadata": {}, "outputs": [], "source": ["import requests\n", "import tensorflow as tf\n", "\n", "import gradio as gr\n", "\n", "inception_net = tf.keras.applications.MobileNetV2() # load the model\n", "\n", "# Download human-readable labels for ImageNet.\n", "response = requests.get(\"https://git.io/JJkYN\")\n", "labels = response.text.split(\"\\n\")\n", "\n", "\n", "def classify_image(inp):\n", " inp = inp.reshape((-1, 224, 224, 3))\n", " inp = tf.keras.applications.mobilenet_v2.preprocess_input(inp)\n", " prediction = inception_net.predict(inp).flatten()\n", " return {labels[i]: float(prediction[i]) for i in range(1000)}\n", "\n", "\n", "image = gr.Image(shape=(224, 224))\n", "label = gr.Label(num_top_classes=3)\n", "\n", "demo = gr.Interface(\n", " fn=classify_image, inputs=image, outputs=label
|
|
|
1 |
+
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: image_classifier_interpretation"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio numpy tensorflow"]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["# Downloading files from the demo repo\n", "import os\n", "os.mkdir('files')\n", "!wget -q -O files/imagenet_labels.json https://github.com/gradio-app/gradio/raw/main/demo/image_classifier_interpretation/files/imagenet_labels.json\n", "os.mkdir('images')\n", "!wget -q -O images/cheetah1.jpg https://github.com/gradio-app/gradio/raw/main/demo/image_classifier_interpretation/images/cheetah1.jpg\n", "!wget -q -O images/lion.jpg https://github.com/gradio-app/gradio/raw/main/demo/image_classifier_interpretation/images/lion.jpg"]}, {"cell_type": "code", "execution_count": null, "id": "44380577570523278879349135829904343037", "metadata": {}, "outputs": [], "source": ["import requests\n", "import tensorflow as tf\n", "\n", "import gradio as gr\n", "\n", "inception_net = tf.keras.applications.MobileNetV2() # load the model\n", "\n", "# Download human-readable labels for ImageNet.\n", "response = requests.get(\"https://git.io/JJkYN\")\n", "labels = response.text.split(\"\\n\")\n", "\n", "\n", "def classify_image(inp):\n", " inp = inp.reshape((-1, 224, 224, 3))\n", " inp = tf.keras.applications.mobilenet_v2.preprocess_input(inp)\n", " prediction = inception_net.predict(inp).flatten()\n", " return {labels[i]: float(prediction[i]) for i in range(1000)}\n", "\n", "\n", "image = gr.Image(shape=(224, 224))\n", "label = gr.Label(num_top_classes=3)\n", "\n", "demo = gr.Interface(\n", " fn=classify_image, inputs=image, outputs=label\n", ")\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
|
run.py
CHANGED
@@ -21,7 +21,7 @@ image = gr.Image(shape=(224, 224))
|
|
21 |
label = gr.Label(num_top_classes=3)
|
22 |
|
23 |
demo = gr.Interface(
|
24 |
-
fn=classify_image, inputs=image, outputs=label
|
25 |
)
|
26 |
|
27 |
if __name__ == "__main__":
|
|
|
21 |
label = gr.Label(num_top_classes=3)
|
22 |
|
23 |
demo = gr.Interface(
|
24 |
+
fn=classify_image, inputs=image, outputs=label
|
25 |
)
|
26 |
|
27 |
if __name__ == "__main__":
|