Spaces:
Running
Running
Upload with huggingface_hub
Browse files
README.md
CHANGED
@@ -6,6 +6,7 @@ colorFrom: indigo
|
|
6 |
colorTo: indigo
|
7 |
sdk: gradio
|
8 |
sdk_version: 3.4.1
|
9 |
-
|
|
|
10 |
pinned: false
|
11 |
---
|
|
|
6 |
colorTo: indigo
|
7 |
sdk: gradio
|
8 |
sdk_version: 3.4.1
|
9 |
+
|
10 |
+
app_file: app.py
|
11 |
pinned: false
|
12 |
---
|
app.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import requests
|
4 |
+
from torchvision import transforms
|
5 |
+
|
6 |
+
model = torch.hub.load('pytorch/vision:v0.6.0', 'resnet18', pretrained=True).eval()
|
7 |
+
response = requests.get("https://git.io/JJkYN")
|
8 |
+
labels = response.text.split("\n")
|
9 |
+
|
10 |
+
def predict(inp):
|
11 |
+
inp = transforms.ToTensor()(inp).unsqueeze(0)
|
12 |
+
with torch.no_grad():
|
13 |
+
prediction = torch.nn.functional.softmax(model(inp)[0], dim=0)
|
14 |
+
confidences = {labels[i]: float(prediction[i]) for i in range(1000)}
|
15 |
+
return confidences
|
16 |
+
|
17 |
+
demo = gr.Interface(fn=predict,
|
18 |
+
inputs=gr.inputs.Image(type="pil"),
|
19 |
+
outputs=gr.outputs.Label(num_top_classes=3),
|
20 |
+
examples=[["cheetah.jpg"]],
|
21 |
+
)
|
22 |
+
|
23 |
+
demo.launch()
|