Upload folder using huggingface_hub
Browse files
README.md
CHANGED
|
@@ -5,7 +5,7 @@ emoji: 🔥
|
|
| 5 |
colorFrom: indigo
|
| 6 |
colorTo: indigo
|
| 7 |
sdk: gradio
|
| 8 |
-
sdk_version:
|
| 9 |
app_file: run.py
|
| 10 |
pinned: false
|
| 11 |
hf_oauth: true
|
|
|
|
| 5 |
colorFrom: indigo
|
| 6 |
colorTo: indigo
|
| 7 |
sdk: gradio
|
| 8 |
+
sdk_version: 6.0.0
|
| 9 |
app_file: run.py
|
| 10 |
pinned: false
|
| 11 |
hf_oauth: true
|
requirements.txt
CHANGED
|
@@ -1,2 +1,2 @@
|
|
| 1 |
-
gradio-client @ git+https://github.com/gradio-app/gradio@
|
| 2 |
-
https://gradio-pypi-previews.s3.amazonaws.com/
|
|
|
|
| 1 |
+
gradio-client @ git+https://github.com/gradio-app/gradio@d007e6cf617baba5c62e49ec2b7ce278aa863a79#subdirectory=client/python
|
| 2 |
+
https://gradio-pypi-previews.s3.amazonaws.com/d007e6cf617baba5c62e49ec2b7ce278aa863a79/gradio-6.0.0-py3-none-any.whl
|
run.ipynb
CHANGED
|
@@ -1 +1 @@
|
|
| 1 |
-
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: chatinterface_thoughts"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "from gradio import ChatMessage\n", "import time\n", "\n", "sleep_time = 0.5\n", "\n", "def simulate_thinking_chat(message, history):\n", " start_time = time.time()\n", " response = ChatMessage(\n", " content=\"\",\n", " metadata={\"title\": \"_Thinking_ step-by-step\", \"id\": 0, \"status\": \"pending\"}\n", " )\n", " yield response\n", "\n", " thoughts = [\n", " \"First, I need to understand the core aspects of the query...\",\n", " \"Now, considering the broader context and implications...\",\n", " \"Analyzing potential approaches to formulate a comprehensive answer...\",\n", " \"Finally, structuring the response for clarity and completeness...\"\n", " ]\n", "\n", " accumulated_thoughts = \"\"\n", " for thought in thoughts:\n", " time.sleep(sleep_time)\n", " accumulated_thoughts += f\"- {thought}\\n\\n\"\n", " response.content = accumulated_thoughts.strip()\n", " yield response\n", "\n", " response.metadata[\"status\"] = \"done\"\n", " response.metadata[\"duration\"] = time.time() - start_time\n", " yield response\n", "\n", " response = [\n", " response,\n", " ChatMessage(\n", " content=\"Based on my thoughts and analysis above, my response is: This dummy repro shows how thoughts of a thinking LLM can be progressively shown before providing its final answer.\"\n", " )\n", " ]\n", " yield response\n", "\n", "\n", "demo = gr.ChatInterface(\n", " simulate_thinking_chat,\n", " title=\"Thinking LLM Chat Interface \ud83e\udd14\",\n", "
|
|
|
|
| 1 |
+
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: chatinterface_thoughts"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "from gradio import ChatMessage\n", "import time\n", "\n", "sleep_time = 0.5\n", "\n", "def simulate_thinking_chat(message, history):\n", " start_time = time.time()\n", " response = ChatMessage(\n", " content=\"\",\n", " metadata={\"title\": \"_Thinking_ step-by-step\", \"id\": 0, \"status\": \"pending\"}\n", " )\n", " yield response\n", "\n", " thoughts = [\n", " \"First, I need to understand the core aspects of the query...\",\n", " \"Now, considering the broader context and implications...\",\n", " \"Analyzing potential approaches to formulate a comprehensive answer...\",\n", " \"Finally, structuring the response for clarity and completeness...\"\n", " ]\n", "\n", " accumulated_thoughts = \"\"\n", " for thought in thoughts:\n", " time.sleep(sleep_time)\n", " accumulated_thoughts += f\"- {thought}\\n\\n\"\n", " response.content = accumulated_thoughts.strip()\n", " yield response\n", "\n", " response.metadata[\"status\"] = \"done\"\n", " response.metadata[\"duration\"] = time.time() - start_time\n", " yield response\n", "\n", " response = [\n", " response,\n", " ChatMessage(\n", " content=\"Based on my thoughts and analysis above, my response is: This dummy repro shows how thoughts of a thinking LLM can be progressively shown before providing its final answer.\"\n", " )\n", " ]\n", " yield response\n", "\n", "\n", "demo = gr.ChatInterface(\n", " simulate_thinking_chat,\n", " title=\"Thinking LLM Chat Interface \ud83e\udd14\",\n", ")\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
|
run.py
CHANGED
|
@@ -42,7 +42,6 @@ def simulate_thinking_chat(message, history):
|
|
| 42 |
demo = gr.ChatInterface(
|
| 43 |
simulate_thinking_chat,
|
| 44 |
title="Thinking LLM Chat Interface 🤔",
|
| 45 |
-
type="messages",
|
| 46 |
)
|
| 47 |
|
| 48 |
if __name__ == "__main__":
|
|
|
|
| 42 |
demo = gr.ChatInterface(
|
| 43 |
simulate_thinking_chat,
|
| 44 |
title="Thinking LLM Chat Interface 🤔",
|
|
|
|
| 45 |
)
|
| 46 |
|
| 47 |
if __name__ == "__main__":
|