Spaces:
Running
Running
Commit
·
ddf36f7
1
Parent(s):
4bd2145
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import xyzservices.providers as xyz
|
3 |
+
from bokeh.plotting import figure
|
4 |
+
from bokeh.tile_providers import get_provider
|
5 |
+
from bokeh.models import ColumnDataSource, Whisker
|
6 |
+
from bokeh.plotting import figure
|
7 |
+
from bokeh.sampledata.autompg2 import autompg2 as df
|
8 |
+
from bokeh.sampledata.penguins import data
|
9 |
+
from bokeh.transform import factor_cmap, jitter, factor_mark
|
10 |
+
|
11 |
+
|
12 |
+
def get_plot(plot_type):
|
13 |
+
if plot_type == "map":
|
14 |
+
tile_provider = get_provider(xyz.OpenStreetMap.Mapnik)
|
15 |
+
plot = figure(
|
16 |
+
x_range=(-2000000, 6000000),
|
17 |
+
y_range=(-1000000, 7000000),
|
18 |
+
x_axis_type="mercator",
|
19 |
+
y_axis_type="mercator",
|
20 |
+
)
|
21 |
+
plot.add_tile(tile_provider)
|
22 |
+
return plot
|
23 |
+
elif plot_type == "whisker":
|
24 |
+
classes = list(sorted(df["class"].unique()))
|
25 |
+
|
26 |
+
p = figure(
|
27 |
+
height=400,
|
28 |
+
x_range=classes,
|
29 |
+
background_fill_color="#efefef",
|
30 |
+
title="Car class vs HWY mpg with quintile ranges",
|
31 |
+
)
|
32 |
+
p.xgrid.grid_line_color = None
|
33 |
+
|
34 |
+
g = df.groupby("class")
|
35 |
+
upper = g.hwy.quantile(0.80)
|
36 |
+
lower = g.hwy.quantile(0.20)
|
37 |
+
source = ColumnDataSource(data=dict(base=classes, upper=upper, lower=lower))
|
38 |
+
|
39 |
+
error = Whisker(
|
40 |
+
base="base",
|
41 |
+
upper="upper",
|
42 |
+
lower="lower",
|
43 |
+
source=source,
|
44 |
+
level="annotation",
|
45 |
+
line_width=2,
|
46 |
+
)
|
47 |
+
error.upper_head.size = 20
|
48 |
+
error.lower_head.size = 20
|
49 |
+
p.add_layout(error)
|
50 |
+
|
51 |
+
p.circle(
|
52 |
+
jitter("class", 0.3, range=p.x_range),
|
53 |
+
"hwy",
|
54 |
+
source=df,
|
55 |
+
alpha=0.5,
|
56 |
+
size=13,
|
57 |
+
line_color="white",
|
58 |
+
color=factor_cmap("class", "Light6", classes),
|
59 |
+
)
|
60 |
+
return p
|
61 |
+
elif plot_type == "scatter":
|
62 |
+
|
63 |
+
SPECIES = sorted(data.species.unique())
|
64 |
+
MARKERS = ["hex", "circle_x", "triangle"]
|
65 |
+
|
66 |
+
p = figure(title="Penguin size", background_fill_color="#fafafa")
|
67 |
+
p.xaxis.axis_label = "Flipper Length (mm)"
|
68 |
+
p.yaxis.axis_label = "Body Mass (g)"
|
69 |
+
|
70 |
+
p.scatter(
|
71 |
+
"flipper_length_mm",
|
72 |
+
"body_mass_g",
|
73 |
+
source=data,
|
74 |
+
legend_group="species",
|
75 |
+
fill_alpha=0.4,
|
76 |
+
size=12,
|
77 |
+
marker=factor_mark("species", MARKERS, SPECIES),
|
78 |
+
color=factor_cmap("species", "Category10_3", SPECIES),
|
79 |
+
)
|
80 |
+
|
81 |
+
p.legend.location = "top_left"
|
82 |
+
p.legend.title = "Species"
|
83 |
+
return p
|
84 |
+
|
85 |
+
with gr.Blocks() as demo:
|
86 |
+
with gr.Row():
|
87 |
+
plot_type = gr.Radio(value="scatter", choices=["scatter", "whisker", "map"])
|
88 |
+
plot = gr.Plot()
|
89 |
+
plot_type.change(get_plot, inputs=[plot_type], outputs=[plot])
|
90 |
+
|
91 |
+
|
92 |
+
if __name__ == "__main__":
|
93 |
+
demo.launch()
|